微信扫码
添加专属顾问
我要投稿
Embedding技术揭秘:如何让机器理解人类世界的复杂关系? 核心内容: 1. Embedding的核心原理与作用:将符号转化为机器可理解的向量 2. 传统深度学习中的经典应用:词向量、推荐系统、图像处理 3. 大模型时代的新突破:多模态对齐、语义搜索与生成式模型
如果要用一句话来解释:Embedding 就是把原本“看不懂”的符号,翻译成机器能理解的数字向量。
想象一下:
人类能理解“苹果”和“香蕉”相似,和“桌子”差得远,但在计算机眼里,词汇最初只是符号(例如 ID 编号),没有任何语义。于是我们需要一种方法,把这些符号变成“有意义的数字坐标”,这套坐标体系就是 Embedding 空间,如图1所示。
Embedding 可以理解为一种“翻译器”,它把原本没有数值意义的离散符号(如词语、用户ID、商品、图片等)转化为低维、稠密的向量表示。这样做的好处是既能压缩数据、提升计算效率,又能在向量空间中保留语义或特征上的相似性,使得相似的对象更接近,不相似的对象更远。
在传统深度学习中,Embedding 常见于词向量和推荐系统;在大模型时代,它是语言模型、图文匹配、多模态对齐等任务的基础。可以说,Embedding 是机器理解世界的一种“坐标系”。
往期精选推荐
点击下图购买掌柜编著新书
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-04
从 Claude Code 看 AI-Native 产品设计
2025-10-03
AGI 都还不确定,怎么理解阿里云提的 ASI
2025-10-03
Anthropic 发布 AI Agent 上下文工程指南
2025-10-02
告别相机!OpenAI用Sora2重新发明了短视频!
2025-10-02
Doubao-Seed-1.6-Vision首发评测:硬核实测18个案例,看懂原生VisualCoT有多强!
2025-10-02
实测 Sora 2 :AI视频的“ChatGPT时刻”来了?八大场景教你解锁各种玩法(附邀请码)
2025-10-02
Sora 2带来3个颠覆性创新,这个行业或将被彻底重构
2025-10-02
Sora2 也许有 3 个月热度,但对电影工业的影响将是永恒
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-07-29
2025-09-08
2025-08-19
2025-09-17
2025-08-20
2025-09-14
2025-09-30
2025-09-29
2025-09-28
2025-09-27
2025-09-27
2025-09-25
2025-09-23
2025-09-22