支持私有化部署
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


刚刚,OpenAI 发布 o3-pro,开源模型推迟,奥特曼发长文:温和的奇点

发布日期:2025-06-11 08:26:29 浏览次数: 1652
作者:APPSO

微信搜一搜,关注“APPSO”

推荐语

OpenAI 新模型 o3-pro 强势登场,带来更精准的智能体验。

核心内容:
1. o3-pro 模型的发布背景及用户开放范围
2. o3-pro 在复杂问题处理和精准回答方面的优势
3. o3-pro 的实际应用案例及其在工作环境中的适应性

杨芳贤
53A创始人/腾讯云(TVP)最具价值专家
ChatGPT 宕机了一整晚,全球网友已经乱成一锅粥了。
图像
OpenAI 的处理方案也有些另类,一边抓紧时间修 bug,一边突然上线了 o3-pro 模型。
从今天起,o3-pro 率先向 Pro 和 Team 用户开放,模型选择器里将替代原本的 o1-pro,而 Enterprise 和 Edu 用户还得等到下周。
只能说,Plus 用户的命也是命。
o3-pro 登场,更强大,也更「慢」
作为推理模型 o3 的升级版,o3-pro 在处理复杂问题、给出更精准的回答方面表现更强,尤其在科学研究、编程、教育和写作这些场景下,有着明显优势。
此外,它也支持调用 ChatGPT 的全套工具,比如网页搜索、文件分析、图像推理、Python 编程、记忆个性化等,整体执行力和整合能力都更强。
当然,功能多了,响应速度也稍微慢了下来。
由于任务调度和工具链调用更复杂,o3-pro 的响应速度一般要比 o1-pro 要长一点,所以更适合在你需要认真思考,或者对答案准确性要求较高的场景中使用。
在官方专家评估中,评审人员普遍认为 o3 Pro 在表达清晰度、答案完整性、指令执行能力和逻辑准确性方面都比 o3 模型更进一步,尤其适合用在科学、教育、编程、商业和写作这些需要深度输出的任务中。
学术评估也验证了这一点,o3-pro 的整体表现持续优于 o1-pro 和 o3。
为了更科学评估模型的稳定性,OpenAI 引入了「四次全对」的评估标准——只有模型连续四次给出正确答案,才算成功。
可以说,这套机制大幅提升了对推理一致性的要求。
值得注意的是,o3 Pro 此次并未单独发布系统卡。OpenAI 表示,由于 o3-pro 与 o3 使用相同的底层模型,其完整的安全性说明请参见 o3 系统卡。
但目前 o3 Pro 仍存在一些功能限制,比如不支持临时对话、图像生成和 Canvas 功能。如需生成图像,用户仍需使用 GPT-4o、o3 或 o4-mini 模型。
在正式上线之前,一些开发者已获得 o3 Pro 的早期访问权限。
前 SpaceX 软件工程师及苹果 visionOS 设计师的 Ben Hylak 在过去一周获得了 o3-pro 的早期访问权限,其体验历程也得到了 OpenAI CEO Sam Altman 在社交媒体上的转发。
具体来说,Ben 与其联合创始人 Alexis 花时间整理了 Raindrop 过去所有的规划会议记录、目标、甚至语音备忘录,然后请 o3-pro 尝试生成一个战略性规划文档。
最终模型生成的结果让他们大受震撼:内容清晰、结构完整,不仅覆盖了目标和时间线,还自动梳理出优先级,甚至明确指出了哪些内容应被砍掉。
在 Ben 看来,模型再强,如果无法融入真实的工作环境,也难以成为真正有用的「成员」。
而 o3 Pro 在理解复杂环境、表达工具能力、提出适当问题、合理调度资源方面有明显提升。尽管模型偶尔在缺乏上下文时会出现「过度思考」的问题,但整体表现已明显优于此前版本。
o3 pro(左)vs o3(右):o3 pro 明显更好地理解了自身的限制和能力范围。
在与同类模型对比中,Ben 则是夸奖道,虽然 Claude Opus 体量感十足,但实战表现平平无奇;而 o3-pro 则更实用,属于「完全不同维度的存在」。

在经典升级版的六边形弹跳小球挑战中,博主 @flavioAd 认为 o3-pro 是第一个几乎能完美处理小球与墙面真实碰撞效果的模型。

ARC-AGI 是一种用来评估语言模型是否具备类通用人工智能(AGI)推理能力的基准测试框架。

它旨在测试 AI 系统在面对新问题时的抽象推理和问题解决能力,类似于人类在面对新情况时能够迅速适应并找到解决方案的能力。

最新测试结果如下:

图像

可以看到,o3-pro 在高难任务上表现略好,但提升幅度不大,且成本随难度上升。

企业是第二曲线,o3-pro 是一块新基石
在 o3-pro 发布,OpenAI CEO Sam Altman 还在社交平台公布了一项重磅消息:o3 模型价格直降 80%。
现在,o3 模型每输入百万 tokens 收费 2 美元,每输出百万 tokens 收费 8 美元。
图像
OpenAI 首席产品官 Kevin Weil 发文表示,由于用户反馈强烈,Plus 用户的 o3 模型使用速率限制将提升一倍,该调整正在陆续上线中。
对比之下,o3-pro 每输入百万 tokens 收费 20 美元,每输出百万 tokens 收费 80 美元,比 o1-pro 便宜 87%。
OpenAI 建议在使用 o3-pro 时启用「后台模式」:对于耗时较长的任务,将会异步启动,从而规避请求超时问题。
官方表示,这波大降价的背后,是 OpenAI 对推理服务架构的全面优化。模型没变,但推理更高效,价格也就顺势调了下来。
而另一方面,或许离不开 OpenAI 在算力资源上的新动向。
自 ChatGPT 横空出世以来,算力资源的限制一直是 OpenAI 的「老大难」,受限于微软绑定协议的限制,Azure 云服务曾是 ChatGPT 的唯一数据中心基础设施提供商。
OpenAI plans to decimate Alphabet's core business, to launch an alternative  to Google Search soon – Firstpost
而据路透社凌晨援引三位知情人士消息称,为了缓解算力压力,OpenAI 已于上个月与 Alphabet( Google 母公司)达成合作协议,引入 Google Cloud 作为额外云服务提供商。
这样的合作既在意料之外,也在情理之中。
一方面,ChatGPT 是近年来对 Google 搜索业务最大的威胁之一,而 Google Cloud 现在却成了它的新靠山。
而另一方面,Google Cloud 2024 年销售额达 430 亿美元,占 Alphabet 收入的 12%。因此,为了在云计算市场中超越亚马逊和微软,Google Cloud 一直致力于扮演一个「中立算力供应商」的角色。
此次合作的达成将是对 Google Cloud 的一次重大利好。截至发稿前,OpenAI、Google 和微软均未就此报道置评。
与此同时,OpenAI 还在全球范围内加速部署 AI 基础设施网络。
今年早些时候,OpenAI 还与软银和甲骨文推进了 5000 亿美元规模的星门计划,并与 CoreWeave 签订了价值数十亿美元的算力采购协议。
高投入的前提离不开高回报,本周据外媒报道,去年,OpenAI 的 ARR 约为 55 亿美元,而现在已突破 100 亿美元,增长了近 80%。
需要说明的是,100 亿美元仅包括其面向消费者的产品、ChatGPT 付费商品以及 API 收入,暂不包括微软的授权收入和其他大额交易。
OpenAI Just Announced 4 New AI Features, and They're Available Now
在商业领域,ARR 是指企业从订阅服务或长期合同中获得的年度经常性收入。它反映了一种可预测的、持续的收入流,通常用于衡量订阅模式业务的健康状况和增长潜力。
简单来说,一家提供软件即服务(SaaS)的公司,与客户签订了每年支付 1000 元的订阅合同。如果有 100 个这样的客户,那么该公司的 ARR 就是 1000 元×100=100000 元。
Data Sheet: OpenAI's ascendant COO, Pat Gelsinger's next act, AirPods Max  goes lossless | Fortune
上周,OpenAI COO Brad Lightcap 还透露 OpenAI 目前拥有 300 万付费商业用户,高于 2 月份报告的 200 万,可以说,OpenAI 目前形势一片大好。
一边通过 o3 把基础模型的成本打下来,一边用 o3-pro 把复杂问题的解决能力拔上去,瞄准高价值场景,OpenAI 也正试图在这两端之间,打通一条通往下一个增长曲线的路径:企业服务。
世界上最强的模型轮流发布,OpenAI 也是这波 AI 浪潮中的一个。
图像
而更强的模型,更稳的算力,更丰富的工具调用,ChatGPT 的定位也早已不只是聊天机器人,而是生产力搭子,旨在吃下职场这个最具生产力的应用场景。
o3-pro 则是这条路上的一块新基石。
至于它能不能撑起 OpenAI 的这份野心,还有待时间验证。但至少现在,它已经让人们重新想象了一次。
型会开源,但不会在 6 月
就在刚刚,Sam Altman 还在社交媒体上表示,OpenAI 预计将在今年夏季晚些时候,发布公开权重的开源模型,而非 6 月份。
此外,Altman 刚刚还发布了个人新博客《The Gentle Singularity(温和的奇点)》,探讨 AI 发展对人类社会的影响。
用他的话来说,这可能是他最后一次在完全没有 AI 帮助下写出的文章,「相对论的角度看,奇点是一点一点发生的,融合则是缓慢进行的。」
附上博客原文地址:
https://blog.samaltman.com/the-gentle-singularity
温和的奇点
我们已经越过了事件视界,腾飞已经开始。人类正接近构建数字超级智能,而至少到目前为止,这一切并没有看起来那么奇怪。
机器人还没在街头随处可见,大多数人也还没整天和 AI 交流。人类仍然会死于疾病,去太空依然困难重重,我们对宇宙的理解仍然非常有限。
尽管如此,我们最近已经构建出在许多方面比人类更聪明的系统,并且这些系统能显著放大人类的产出。最不可能的部分已经完成——那些促成 GPT-4 和 o3 等系统诞生的科学突破来之不易,但它们将带我们走得更远。
AI 将在多个方面为世界带来贡献,但 AI 加速科学进步与提升生产力所带来的生活质量提升将是巨大的;未来有望远比现在更加美好。科学进步是整体进步的最大驱动力;一想到我们有可能获得多少更多的成果,就令人振奋。
从某种意义上说,ChatGPT 已经比历史上任何一个人都更强大。每天有数亿人依赖它,且任务越来越重要;一项小的新增能力可能带来极大的正面影响,而一个微小的不匹配在被数亿人使用时,也可能造成很大的负面影响。
2025 年,我们迎来了能够真正进行认知工作的智能代理;编写计算机代码的方式将彻底改变。2026 年,我们很可能会看到能产生原创见解的系统。2027 年,或许会出现能在现实世界中执行任务的机器人。
将有更多人能够创作软件和艺术。但世界对这两者的需求也将大幅上升。专家们如果拥抱这些新工具,可能仍然比新手强得多。总体来看,2030 年一个人完成的事情将远超 2020 年,这种变化将令人瞩目,也会有许多人学会如何从中受益。
在最重要的方面,2030 年代也许不会有太剧烈的变化。人们依然会爱家人,释放创造力,玩游戏,在湖里游泳。
但在仍然非常重要的其他方面,2030年代很可能与以往任何时代都大不相同。我们不知道人类智能的上限有多高,但我们即将找出答案。
到了 2030 年代,智慧和能源——即想法及实现想法的能力——将变得极其丰富。这两者长期以来一直是人类进步的基本限制;如果智慧和能源变得充足(加上良好的治理),理论上我们可以实现一切。
现在我们已经与惊人的数字智能共处,并且在最初的震惊之后,大多数人已渐渐习惯。我们很快会从惊叹 AI 能写出优美段落,变成期待它写出完整小说;从惊讶它能诊断疾病,变成期望它能研发治愈方法;从惊讶它能写出小程序,变成希望它能创建整家公司。这就是「奇点」的方式:奇迹变成日常,然后变成起点。
已经有科学家告诉我们,他们的工作效率是过去的两到三倍。高级AI之所以意义重大,其中一个最关键的原因是我们可以用它来加速 AI 研究本身。我们也许能发现新的计算材料、更好的算法,甚至更多未知的可能。如果我们能用一年、甚至一个月完成十年的研究,进步的速度显然会大不一样。
从现在开始,我们已有的工具将帮助我们发现更多科学洞见,并辅助我们创造更先进的 AI 系统。当然,这还不是AI完全自主地更新自身代码,但这确实是「递归自我改进」的初始形态。
还有其他一些自我强化的循环正在发生。AI 带来的经济价值推动了基础设施建设的飞轮,越来越多的资源正用于运行这些强大的 AI 系统。而能够制造其他机器人的机器人(在某种意义上,还有能建造其他数据中心的数据中心)离我们也不远了。
如果我们必须用传统方式制造出最初的一百万个人形机器人,但它们随后能接手整个供应链——开采和提炼矿物、驾驶卡车、运行工厂等——并制造更多机器人、芯片厂和数据中心,那进步的速度就会截然不同。
随着数据中心的生产逐渐自动化,智能的成本最终应该会接近电力成本。(很多人关心 ChatGPT 每次查询用多少能量;平均每次查询大约耗电 0.34 瓦时,大概相当于烤箱运行一秒多一点,或高效灯泡使用几分钟。此外,每次查询大约用水 0.000085 加仑,约等于十五分之一茶匙。)
科技进步的速度将持续加快,而人类也有很强的适应能力。虽然会有艰难的挑战,比如整类工作消失,但另一方面,世界的财富增长如此之快,以至于我们将有机会认真考虑以前无法实现的新政策。我们可能不会一次性建立一套新的社会契约,但回顾几十年后,会发现逐步变化的累积带来了巨大转变。
如果历史可以作为参考,我们总能找到新事物去做、新欲望去追求,并迅速适应新工具(工业革命后的职业变迁就是个很好的例子)。人们的期望会提升,但能力也会随之快速提升,我们会拥有更好的生活。我们会为彼此创造越来越美妙的事物。相比 AI,人类有一个长期且重要的优势:我们天生在意他人,以及他人怎么想、怎么做,而对机器却没什么感情。
如果一千年前的自给农民看到我们现在的生活,会觉得我们从事的是「假工作」,仿佛只是在自娱自乐,因为我们食物充足、奢华难以想象。我希望我们未来一千年后也能用同样的眼光看待那些工作——觉得它们「非常假」,但毫无疑问,那些人会认为自己的工作极其重要且充实。
未来将涌现出大量的新奇迹。到 2035 年,我们会取得什么突破现在都难以想象;可能今年我们还在解决高能物理问题,明年就开始太空殖民;或今年在材料科学上取得重大突破,明年就实现真正高带宽的脑机接口。很多人会选择继续以当下的方式生活,但也肯定会有人选择「接入系统」。
展望未来,这些事现在听起来难以想象。但真正经历它时,可能会让人惊叹,却仍在可控范围内。从相对论的角度看,奇点是一点点发生的,融合是逐步进行的。我们正攀登那条技术指数增长的长弧线;向前看总觉得是陡峭的垂直,向后看则像是平缓的线,但其实它是一条平滑的曲线。(回想 2020 年,如果那时我们说 2025 年会接近 AGI,听起来会很疯狂,但对比过去五年所发生的一切,也许现在的预测不那么疯狂了。)
当然,我们还面临许多严峻挑战。我们需要在技术上和社会层面解决安全问题,但在那之后,最重要的是确保超级智能能被广泛获取,因为这关系到经济结构。未来的最好路径可能包括以下几个步骤:
首先解决「对齐问题」,也就是我们能有把握地确保 AI 系统长期学会并实现我们集体真正的意愿(比如社交媒体就是对齐失败的例子:推荐算法非常擅长让你不停刷,但它们是通过利用大脑短期偏好来压制你长期目标的)。
接着,重点让超级智能变得便宜、普及,并避免被某个个人、公司或国家高度集中掌控。社会具有韧性、创造力,也能迅速适应。
如果我们能激发集体的意志和智慧,尽管会犯错、也会有失控,但我们会迅速学习与调整,从而最大化收益、最小化风险。在社会广泛设定的框架下,给予用户更多自由将非常关键。世界越早开始关于这些框架及「集体对齐」如何定义的讨论,就越好。
我们(整个行业,不只是 OpenAI)正在为世界构建一个「大脑」。
这个大脑将高度个性化、人人易用;它的极限将取决于我们的好点子。长期以来,技术圈总爱嘲笑那些「只有想法的人」——他们有个点子,却没法实现。而现在,看起来他们的时代终于要到了。
OpenAI 如今做的事情很多,但最根本的身份仍是一个超级智能研究公司。我们还有大量工作要做,但前路已经被照亮,黑暗正迅速退去。我们对能做这些事情感到无比感激。
「智能几乎免费」已近在眼前。也许听起来疯狂,但如果我们在 2020 年告诉你我们将在 2025 年到达现在这个水平,听起来比我们现在对 2030 年的预测更疯狂。
愿我们顺利、指数级、平稳地迈入超级智能时代。

53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询