微信扫码
添加专属顾问
我要投稿
Coze Studio让股票交易智能化触手可及,零代码开发+AI能力助你打造专业级量化系统。 核心内容: 1. Coze Studio的核心优势:低门槛开发与强大AI能力 2. 智能股票交易系统的模块化架构设计 3. 从行情获取到智能分析的完整实现路径
在人工智能快速发展的今天,传统的股票交易方式正在被智能化、自动化的新方式所取代。Coze Studio作为一款强大的AI Agent开发平台,为构建智能股票交易系统提供了全新的可能性。本文将深入探讨如何利用Coze Studio打造一个功能完善、智能高效的股票交易系统。
Coze Studio是一站式AI Agent开发工具,源自服务了上万家企业、数百万开发者的"扣子开发平台"。它将核心引擎完全开放,为开发者提供了一个前所未有的AI Agent开发环境。
核心特点:
后端技术栈:
前端技术栈:
基于Coze Studio构建的股票交易系统包含以下核心模块:
功能特点:
功能特点:
实现方式:
# 工作流配置示例
workflow:
- name: "获取行情数据"
type: "market_data_fetcher"
inputs:
- stock_code: "000001" # 股票代码
- data_type: "realtime" # 数据类型:realtime(实时), historical(历史), kline(K线)
- time_period: "1d" # 时间周期:1m, 5m, 15m, 30m, 1h, 1d, 1w, 1M
outputs:
- price_data: # 价格数据
current_price: 10.50
open_price: 10.30
high_price: 10.80
low_price: 10.20
volume: 1000000
change_percent: 1.94
- kline_data: # K线数据
- time: "2024-01-15 09:30:00"
open: 10.30
high: 10.35
low: 10.25
close: 10.32
volume: 50000
- market_status: "open" # 市场状态:open, closed, pre_open, after_hours
- name: "技术分析"
type: "technical_analysis"
inputs:
- stock_code
- kline_data
- time_period
outputs:
- indicators:
ma5: 10.45
ma10: 10.38
ma20: 10.25
macd: 0.15
rsi: 65.5
- signals:
- type: "buy"
strength: 0.8
reason: "MACD金叉,RSI处于合理区间"
- name: "新闻分析"
type: "news_analysis"
inputs:
- stock_code
- date_range
outputs:
- sentiment_score: 0.75 # 情感得分:-1到1,正值表示正面
- key_events:
- title: "公司发布Q4财报,净利润同比增长15%"
sentiment: 0.8
impact: "high"
功能特点:
功能特点:
功能特点:
# 行情数据获取示例 - 通过API服务
import requests
import json
from typing import Dict, List, Optional
import time
class MarketDataAPIClient:
def __init__(self, api_config: Dict):
self.api_config = api_config
self.session = requests.Session()
self.session.headers.update({
'Content-Type': 'application/json',
'User-Agent': 'CozeStudio/1.0'
})
def _make_request(self, url: str, params: Dict = None, headers: Dict = None) -> Dict:
"""统一的API请求处理"""
try:
response = self.session.get(url, params=params, headers=headers, timeout=10)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
# 实现重试逻辑和备用数据源切换
return self._fallback_request(url, params, headers)
def _fallback_request(self, url: str, params: Dict = None, headers: Dict = None) -> Dict:
"""备用数据源请求"""
# 切换到备用API
backup_url = url.replace('marketdata.com', 'backup-marketdata.com')
try:
response = self.session.get(backup_url, params=params, headers=headers, timeout=15)
response.raise_for_status()
return response.json()
except:
# 返回缓存数据或默认数据
return self._get_cached_data(params.get('stock_code'))
def get_realtime_data(self, stock_code: str, market: str = 'CN') -> Dict:
"""通过API获取实时行情数据"""
url = f"{self.api_config['marketdata_api']['base_url']}/stock/{stock_code}/quote"
headers = {
'Authorization': f"Bearer {self.api_config['marketdata_api']['api_key']}"
}
params = {
'stock_code': stock_code,
'market': market
}
response_data = self._make_request(url, params, headers)
return {
'stock_code': stock_code,
'current_price': response_data['data']['price'],
'open_price': response_data['data']['open'],
'high_price': response_data['data']['high'],
'low_price': response_data['data']['low'],
'volume': response_data['data']['volume'],
'change_percent': response_data['data']['change_percent'],
'timestamp': response_data['data']['timestamp'],
'data_source': response_data['meta']['source']
}
def get_kline_data(self, stock_code: str, period: str = '1d',
count: int = 100, start_date: str = None,
end_date: str = None) -> List[Dict]:
"""通过API获取K线数据"""
url = f"{self.api_config['marketdata_api']['base_url']}/stock/{stock_code}/kline"
headers = {
'Authorization': f"Bearer {self.api_config['marketdata_api']['api_key']}"
}
params = {
'stock_code': stock_code,
'period': period,
'count': count
}
if start_date:
params['start_date'] = start_date
if end_date:
params['end_date'] = end_date
response_data = self._make_request(url, params, headers)
return response_data['data']['kline_list']
def get_market_status(self, market: str = 'CN') -> Dict:
"""通过API获取市场状态"""
url = f"{self.api_config['marketdata_api']['base_url']}/market/status"
headers = {
'Authorization': f"Bearer {self.api_config['marketdata_api']['api_key']}"
}
params = {
'market': market,
'date': time.strftime('%Y-%m-%d')
}
response_data = self._make_request(url, params, headers)
return {
'market': market,
'status': response_data['data']['status'],
'trading_hours': response_data['data']['trading_hours'],
'holidays': response_data['data']['holidays'],
'next_trading_day': response_data['data']['next_trading_day']
}
# Coze Studio工作流节点实现
def market_data_workflow_node(inputs: Dict) -> Dict:
"""行情数据获取工作流节点 - 通过HTTP请求调用外部API"""
# 从环境变量或配置中获取API配置
api_config = {
'marketdata_api': {
'base_url': 'https://api.marketdata.com/v1',
'api_key': os.getenv('MARKETDATA_API_KEY')
},
'tushare_api': {
'base_url': 'https://api.tushare.pro',
'token': os.getenv('TUSHARE_TOKEN')
}
}
client = MarketDataAPIClient(api_config)
stock_code = inputs.get('stock_code')
data_type = inputs.get('data_type', 'realtime')
market = inputs.get('market', 'CN')
try:
if data_type == 'realtime':
return client.get_realtime_data(stock_code, market)
elif data_type == 'kline':
period = inputs.get('time_period', '1d')
count = inputs.get('data_count', 100)
return {
'kline_data': client.get_kline_data(stock_code, period, count),
'period': period,
'count': count
}
elif data_type == 'market_status':
return client.get_market_status(market)
else:
raise ValueError(f"Unsupported data type: {data_type}")
except Exception as e:
# 错误处理和日志记录
logger.error(f"Failed to fetch market data: {e}")
return {
'error': str(e),
'fallback_data': True,
'stock_code': stock_code
}
# 选股策略示例
def intelligent_stock_selection():
# 1. 获取行情数据
market_data = get_market_data_for_universe()
# 2. 技术面筛选
technical_candidates = filter_by_technical_indicators(market_data)
# 3. 基本面筛选
fundamental_candidates = filter_by_fundamentals()
# 4. 资金面筛选
capital_candidates = filter_by_capital_flow()
# 5. AI综合评分
final_candidates = ai_comprehensive_scoring(
technical_candidates,
fundamental_candidates,
capital_candidates
)
return final_candidates
用户画像: 有一定投资经验,希望借助AI提升投资效率的个人投资者
解决方案:
用户画像: 需要管理大量资金,要求高精度和高效率的机构投资者
解决方案:
用户画像: 为多个客户提供投资建议的专业顾问
解决方案:
在Coze Studio中,行情数据获取可以通过专门的工作流节点来实现。以下是详细的节点配置示例:
node:
id: "market_data_realtime"
name: "获取实时行情"
type: "http_request" # 使用HTTP请求节点调用外部API
config:
method: "GET"
url: "https://api.marketdata.com/v1/stock/{{stock_code}}/quote"
headers:
Authorization: "Bearer {{api_key}}"
Content-Type: "application/json"
params:
stock_code: "{{input.stock_code}}"
market: "{{input.market}}"
timeout: "5s"
retry_count: 3
data_sources:
primary: "marketdata_api"
backup: "tushare_api"
output_mapping:
current_price: "data.price"
volume: "data.volume"
change_percent: "data.change_percent"
timestamp: "data.timestamp"
node:
id: "market_data_kline"
name: "获取K线数据"
type: "http_request"
config:
method: "GET"
url: "https://api.marketdata.com/v1/stock/{{stock_code}}/kline"
headers:
Authorization: "Bearer {{api_key}}"
Content-Type: "application/json"
params:
stock_code: "{{input.stock_code}}"
period: "{{input.time_period}}"
count: "{{input.data_count}}"
start_date: "{{input.start_date}}"
end_date: "{{input.end_date}}"
timeout: "10s"
retry_count: 3
data_sources:
primary: "marketdata_api"
backup: "akshare_api"
output_mapping:
kline_data: "data.kline_list"
indicators: "data.indicators"
period_info: "data.period_info"
node:
id: "market_status_monitor"
name: "市场状态监控"
type: "http_request"
config:
method: "GET"
url: "https://api.marketdata.com/v1/market/status"
headers:
Authorization: "Bearer {{api_key}}"
Content-Type: "application/json"
params:
market: "{{input.market}}"
date: "{{input.date}}"
timeout: "5s"
retry_count: 2
data_sources:
primary: "marketdata_api"
backup: "exchange_api"
output_mapping:
market_status: "data.status"
trading_hours: "data.trading_hours"
holidays: "data.holidays"
next_trading_day: "data.next_trading_day"
graph TD
A[用户输入股票代码] --> B[行情数据获取节点]
B --> C{数据类型判断}
C -->|实时数据| D[实时行情节点]
C -->|K线数据| E[K线数据节点]
C -->|市场状态| F[市场状态节点]
D --> G[数据验证]
E --> G
F --> G
G --> H[数据格式化]
H --> I[输出到下游节点]
I --> J[技术分析节点]
I --> K[风险监控节点]
I --> L[交易信号生成]
api_config:
marketdata_api:
base_url: "https://api.marketdata.com/v1"
api_key: "{{env.MARKETDATA_API_KEY}}"
rate_limit: "1000/hour"
timeout: "10s"
retry_policy:
max_retries: 3
backoff_multiplier: 2
initial_delay: "1s"
tushare_api:
base_url: "https://api.tushare.pro"
token: "{{env.TUSHARE_TOKEN}}"
rate_limit: "500/hour"
timeout: "15s"
akshare_api:
base_url: "https://api.akshare.xyz"
api_key: "{{env.AKSHARE_API_KEY}}"
rate_limit: "2000/hour"
timeout: "8s"
yfinance_api:
base_url: "https://query1.finance.yahoo.com"
rate_limit: "2000/hour"
timeout: "12s"
authentication:
api_keys:
- name: "marketdata_api_key"
value: "{{env.MARKETDATA_API_KEY}}"
scope: "market_data"
permissions: ["read"]
- name: "tushare_token"
value: "{{env.TUSHARE_TOKEN}}"
scope: "market_data"
permissions: ["read"]
- name: "akshare_api_key"
value: "{{env.AKSHARE_API_KEY}}"
scope: "market_data"
permissions: ["read"]
oauth_config:
client_id: "{{env.OAUTH_CLIENT_ID}}"
client_secret: "{{env.OAUTH_CLIENT_SECRET}}"
token_url: "https://auth.marketdata.com/oauth/token"
scope: "market_data:read"
data_source_priority:
realtime_data:
primary: "marketdata_api"
backup: ["tushare_api", "akshare_api"]
fallback: "cached_data"
kline_data:
primary: "marketdata_api"
backup: ["akshare_api", "tushare_api"]
fallback: "cached_data"
market_status:
primary: "marketdata_api"
backup: ["exchange_api"]
fallback: "default_schedule"
error_handling:
api_failure:
action: "switch_to_backup"
backup_sources:
- "tushare_api"
- "akshare_api"
- "yfinance_api"
retry_count: 3
retry_interval: "5s"
circuit_breaker:
failure_threshold: 5
recovery_timeout: "30s"
rate_limit_exceeded:
action: "queue_and_retry"
queue_timeout: "60s"
exponential_backoff: true
data_validation:
price_range_check: true
volume_sanity_check: true
timestamp_validity_check: true
api_response_validation: true
fallback_strategy:
use_cached_data: true
cache_expiry: "5m"
notify_user: true
log_error: true
# 1. 获取源码
git clone https://github.com/coze-dev/coze-studio.git
# 2. 配置模型
cp backend/conf/model/template/model_template_ark_doubao-seed-1.6.yaml \
backend/conf/model/ark_doubao-seed-1.6.yaml
# 3. 配置API密钥
# 在.env文件中添加行情数据API配置
echo "MARKETDATA_API_KEY=your_marketdata_api_key" >> .env
echo "TUSHARE_TOKEN=your_tushare_token" >> .env
echo "AKSHARE_API_KEY=your_akshare_api_key" >> .env
# 4. 启动服务
cd docker
cp .env.example .env
docker compose --profile "*" up -d
# 配置环境变量
export MARKETDATA_API_KEY="your_api_key_here"
export TUSHARE_TOKEN="your_token_here"
export AKSHARE_API_KEY="your_key_here"
# 验证API连接
curl -H "Authorization: Bearer $MARKETDATA_API_KEY" \
"https://api.marketdata.com/v1/stock/000001/quote"
Coze Studio为构建智能股票交易系统提供了强大的技术基础。通过其可视化开发能力、丰富的AI功能和开放的技术架构,开发者可以快速构建功能完善、性能优异的股票交易系统。
在AI时代,智能化的投资工具将成为投资者的重要助手。Coze Studio不仅降低了AI应用开发的门槛,更为金融科技的发展开辟了新的道路。相信随着技术的不断进步和生态的不断完善,基于Coze Studio构建的股票交易系统将为投资者带来更好的投资体验和更高的投资回报。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-31
扣子开源,三天揽获1.5W GitHub Star
2025-07-31
官方AMA:扣子为什么要开源?
2025-07-31
Coze开源文档资料清单
2025-07-31
手把手教你本地部署!京东JoyAgent全攻略:从零拥有一个企业级的AI Agent
2025-07-31
扣子罗盘(Coze Loop)开源版本地部署,构建一站式AI Agent调试、评估、监控平台
2025-07-31
Github 2.3k star 太牛x,京东(JoyAgent‑JDGenie)项目来得太及时啦,端到端多智能体神器!
2025-07-31
字节打响 Agent 平台战!Coze扣子、n8n、Dify谁是终点?
2025-07-31
Coze开源后,我用LLM+OCR做了一个文档智能问答Agent
2025-07-23
2025-06-17
2025-06-17
2025-07-23
2025-07-14
2025-07-12
2025-05-29
2025-07-27
2025-05-12
2025-05-14
2025-07-31
2025-07-31
2025-07-30
2025-07-30
2025-07-30
2025-07-29
2025-07-29
2025-07-28