微信扫码
添加专属顾问
我要投稿
pip install -U optimum[neural-compressor] intel-extension-for-transformers
def quantize(model_name: str, output_path: str, calibration_set: "datasets.Dataset"):model = AutoModel.from_pretrained(model_name)tokenizer = AutoTokenizer.from_pretrained(model_name)def preprocess_function(examples):return tokenizer(examples["text"], padding="max_length", max_length=512, truncation=True)vectorized_ds = calibration_set.map(preprocess_function, num_proc=10)vectorized_ds = vectorized_ds.remove_columns(["text"])quantizer = INCQuantizer.from_pretrained(model)quantization_config = PostTrainingQuantConfig(approach="static", backend="ipex", domain="nlp")quantizer.quantize(quantization_config=quantization_config,calibration_dataset=vectorized_ds,save_directory=output_path,batch_size=1,)tokenizer.save_pretrained(output_path)
# 数据集地址https://huggingface.co/datasets/allenai/qasper
from optimum.intel import IPEXModelmodel = IPEXModel.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("Intel/bge-small-en-v1.5-rag-int8-static")inputs = tokenizer(sentences, return_tensors="pt")with torch.no_grad():outputs = model(**inputs)# get the [CLS] tokenembeddings = outputs[0][:, 0]
从上面的结果可以看出,通过量化后模型的延迟和吞吐量都有大幅提升。大家是不是学会的呢。下篇我们继续介绍一个相关工具,辅助我们高效管理RAG流程。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2026-01-15
2025-12-07
2025-11-06
2026-01-02
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23