微信扫码
添加专属顾问
我要投稿
深入浅出的AI智能体架构指南,带你领略AI的无限可能。 核心内容: 1. Agent(智能体):AI中的"打工人"及其核心能力 2. LLM(大语言模型):AI的"学霸大脑"及其应用 3. RAG(检索增强生成):给AI配个"随身资料库"
想象你有个24小时待命的虚拟员工,能自己观察环境、思考对策、调用工具完成任务,这就是智能体。
LLM就是ChatGPT这类大模型,本质是一个超级语言学霸。
为了解决LLM的“幻觉”问题,RAG相当于给AI装了个外接硬盘,存满企业或个人的专属知识。
想让AI好好干活,关键得会“下指令”。
想象你要开发一个“旅游规划AI”:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-16
Dify 外部知识库最佳实践:基于 InfraNodus 扩展 RAG 图谱能力
2026-01-16
多层次理解向量匹配的底层原理
2026-01-15
2026 年你需要了解的 RAG 全解析
2026-01-14
官宣,Milvus开源语义高亮模型:告别饱和检索,帮RAG、agent剪枝80%上下文
2026-01-13
从RAG到记忆工程:AI长期记忆系统的架构范式与落地瓶颈
2026-01-13
索引选不对,成本贵十倍!ScaNN就是电商推荐的最优解
2026-01-13
Cursor 用文件系统重构上下文工程:5个实践讲透
2026-01-12
CES 2026 | 如何使用 RAG 和安全护栏构建语音智能体
2025-12-04
2025-10-31
2025-11-04
2025-12-03
2025-11-13
2025-11-13
2025-12-02
2025-11-05
2025-11-06
2025-10-29
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23
2025-11-20