微信扫码
添加专属顾问
我要投稿
深入浅出的AI智能体架构指南,带你领略AI的无限可能。 核心内容: 1. Agent(智能体):AI中的"打工人"及其核心能力 2. LLM(大语言模型):AI的"学霸大脑"及其应用 3. RAG(检索增强生成):给AI配个"随身资料库"
想象你有个24小时待命的虚拟员工,能自己观察环境、思考对策、调用工具完成任务,这就是智能体。
LLM就是ChatGPT这类大模型,本质是一个超级语言学霸。
为了解决LLM的“幻觉”问题,RAG相当于给AI装了个外接硬盘,存满企业或个人的专属知识。
想让AI好好干活,关键得会“下指令”。
想象你要开发一个“旅游规划AI”:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-28
MCP的四种攻击方法:MCE,RAC,CT,RADE
2025-04-27
RAG技术:优化知识库,解决AI答非所问
2025-04-27
AI 写代码总是翻车?Upstash 创始人怒推 Context7:给 LLM 喂上最新鲜的官方文档。
2025-04-26
葵花宝典之「知识库」调优秘籍!RAG优化指南!
2025-04-26
RagFlow文档解析过程分析
2025-04-26
深度学习!构建基于LangGraph的RAG多智能体研究工具。
2025-04-26
用RAG与Agent提升企业问答效率:我的AI实践之路
2025-04-26
理解 RAG 第一部分:为什么需要它
2024-10-27
2024-09-04
2024-07-18
2024-05-05
2024-06-20
2024-06-13
2024-07-09
2024-07-09
2024-05-19
2024-07-07
2025-04-26
2025-04-25
2025-04-22
2025-04-22
2025-04-20
2025-04-19
2025-04-18
2025-04-16