微信扫码
添加专属顾问
我要投稿
掌握Embedding模型选型技巧,提升知识库与RAG准确率上限。 核心内容: 1. 嵌入模型与向量模型的核心概念解析 2. 全球模型性能全景对比分析 3. MTEB基准下各模型参数与得分情况
作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:
作为嵌入技术的下游应用体系,主要包含两大方向:
参考地址:MTEB Leaderboard - a Hugging Face Space by mteb
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2026-01-15
2025-12-07
2025-11-06
2026-01-02
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23