微信扫码
添加专属顾问
我要投稿
RAR技术突破传统检索局限,让AI问答更精准高效,解决复杂场景下的信息获取难题。 核心内容: 1. RAR(推理增强检索)如何弥补传统检索的不足 2. RAR在开放域问答和多源异构知识库中的实战应用 3. 复杂业务场景下RAR的链式推理能力解析
在RAG(检索增强生成)落地的过程中,存在一个效果显著,却常被忽视的技术方法 —— RAR
“最近极客公园报道了哪些关于具身智能的初创公司”
“某型号设备在Q3华东区的具体销量”
“为什么上季度的产品的退货率突然升高?可能受哪些因素影响?”
(需要分析退货记录、客户反馈、物流数据等多方信息,推断原因链)
“基于当前市场趋势和库存水平,应该优先推广哪款产品?”
(需要综合市场报告、库存数据、产品利润等信息进行决策分析)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-18
关于相似度计算和rerank重排序的区别和作用
2025-09-18
给RAG打分:小白也能懂的AI系统评测全攻略
2025-09-18
向量化与嵌入模型:RAG系统背后的隐形英雄
2025-09-17
当“相似度 ≠ 相关性”:PageIndex 带来的 RAG 新范式
2025-09-17
解锁RAG高阶密码:自适应、多模态、个性化技术深度剖析
2025-09-16
你的 RAG 还在“垃圾进,垃圾出”?我用这套流程,把“废料”文档变成了黄金知识库
2025-09-15
应对知识管理挑战:RAG技术如何驱动企业智能化升级
2025-09-15
RAG彻底爆了!一文掌握其效果优化的架构设计及核心要点
2025-07-15
2025-06-24
2025-06-24
2025-07-16
2025-06-23
2025-07-09
2025-07-08
2025-08-05
2025-08-18
2025-09-02
2025-09-10
2025-09-10
2025-09-03
2025-08-28
2025-08-25
2025-08-20
2025-08-11
2025-08-05