微信扫码
添加专属顾问
我要投稿
RAR技术突破传统检索局限,让AI问答更精准高效,解决复杂场景下的信息获取难题。 核心内容: 1. RAR(推理增强检索)如何弥补传统检索的不足 2. RAR在开放域问答和多源异构知识库中的实战应用 3. 复杂业务场景下RAR的链式推理能力解析
在RAG(检索增强生成)落地的过程中,存在一个效果显著,却常被忽视的技术方法 —— RAR
“最近极客公园报道了哪些关于具身智能的初创公司”
“某型号设备在Q3华东区的具体销量”
“为什么上季度的产品的退货率突然升高?可能受哪些因素影响?”(需要分析退货记录、客户反馈、物流数据等多方信息,推断原因链)“基于当前市场趋势和库存水平,应该优先推广哪款产品?”(需要综合市场报告、库存数据、产品利润等信息进行决策分析)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-02
OpenViking:面向 Agent 的上下文数据库
2026-02-02
别再迷信向量数据库了,RAG 的“大力出奇迹”该结束了
2026-01-29
告别黑盒开发!清华系团队开源 UltraRAG:用“搭积木”的方式构建复杂 RAG 流程
2026-01-28
RAG优化不抓瞎!Milvus检索可视化,帮你快速定位嵌入、切块、索引哪有问题
2026-01-28
今天,分享Clawdbot记忆系统最佳工程实践
2026-01-28
Fusion GraphRAG:超越 GraphRAG 的多模态企业级 AI 问答
2026-01-28
Semantic Kernel内存管理系统——为AI注入持久记忆与上下文感知能力
2026-01-28
AgentSkills 揭示的真相:上下文工程走错了三年
2025-12-04
2025-12-03
2025-11-13
2025-12-02
2025-11-13
2025-11-05
2026-01-15
2025-12-07
2025-11-06
2026-01-02
2026-01-19
2026-01-12
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23