微信扫码
添加专属顾问
我要投稿
ToPG通过创新的图遍历方法,巧妙平衡信息粒度与结构灵活性,为复杂RAG查询提供高效解决方案。 核心内容: 1. 传统RAG方案的三大痛点与局限性 2. ToPG框架的异构构图与三种智能导航策略 3. 关键技术实现与多场景性能对比数据
https://github.com/idiap/ToPG
https://arxiv.org/pdf/2601.04859
A Navigational Approach for Comprehensive RAG via Traversal over Proposition Graphs
|
Chunk-RAG |
||
|
Iterative-RAG |
||
|
KG-RAG |
一句话痛点:粒度 vs. 结构不可兼得——要么信息太粗,要么结构太硬。
图 1 一张图看懂 ToPG 框架
异构图:命题节点(蓝色)既连实体(橙色)也连段落(绿色),实现“细粒度+高连通”
用命题(proposition)作为最小知识单元,把“实体-命题-段落”拼成一张异构图,再让 LLM 以“建议-选择(Suggestion-Selection)”的方式边导航边反馈,实现三种搜索模式:
| Naive | ||
| Local | ||
| Global |
图 2 分步骤示例:Local 模式如何 2 跳找到“Gloria in D 大调作曲家出生地的著名桥梁”
Global 模式:多起点并行游走 → 社区检测 → 综述答案
| 图谱构建 | ||
| Query-Aware PPR | ||
| Local 迭代 | ||
| Global 社区 |
单跳场景 Naive 模式已足够,Local 反而增加 token 成本;但在复杂场景,3 轮迭代即可把 F1 拉涨 11+
图 3 胜率热力图:600 个锚点后收益饱和
| Comprehensiveness | |||
| Diversity & Empowerment |
显著优于 |
图 4 Token 成本对比
| ToPG-Global | ||
ToPG 用“命题级粒度+查询感知游走”证明:把图谱做软、把导航做活,就能在单跳、多跳、抽象问答三条赛道都拿到 SOTA 级成绩。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-11
高精度知识库≠Milvus+llm!这份PaddleOCR+混合检索+Rerank技巧请收好
2026-01-10
AIOps探索:做AIOps不要低估运维领域的RAG带来的影响
2026-01-10
Qwen3-VL 正式开源:多模态 RAG 的关键一环终于补齐
2026-01-09
白嫖一个英伟达的垂直领域 Deep Research 智能体
2026-01-09
Milvus 向量数据库实战:从零构建高性能 RAG 系统
2026-01-08
都有混合检索与智能路由了,谁还在给RAG赛博哭坟?
2026-01-06
当 Claude Code 连接 NotebookLM,个人 AI 终于有了“长期记忆”
2026-01-06
AI 总 “胡说八道”?分类法 + 本体论,让 AI 决策透明可追溯
2025-12-04
2025-11-04
2025-10-31
2025-12-03
2025-11-13
2025-10-16
2025-10-16
2025-11-13
2025-12-02
2025-11-05
2026-01-08
2026-01-02
2025-12-23
2025-12-21
2025-12-10
2025-11-23
2025-11-20
2025-11-19