微信扫码
添加专属顾问
我要投稿
大型语言模型(LLM)在自然语言处理任务中取得了显著的成功,但同时也面临着模型过大、计算需求过高的问题。为了解决这些问题,模型压缩技术应运而生,旨在减小模型大小、降低计算复杂度并提升运行效率。本文将对LLM压缩技术进行详细的分析,包括剪枝、知识蒸馏和量化等关键技术,并结合实际应用案例进行分析。
在实际应用中,例如DeepMind的Chinchilla 70B模型,通过剪枝、知识蒸馏和量化等技术,实现了在无损压缩方面的卓越表现,超过了传统的PNG和FLAC压缩算法。这表明压缩技术不仅可以减小模型大小,还能在某些情况下提升模型的性能和适用性。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-14
我微调了一个LangChain专家模型,离Vibe Agent又近了一步
2025-12-11
左脚踩右脚:大模型的有趣且简单的微调方式“SHADOW-FT”
2025-12-11
大模型训练的高效内存解决方案:流水线感知的细粒度激活卸载,实现显存开销与吞吐性能的联合最优
2025-12-08
一杯咖啡成本搞定多模态微调:FC DevPod + Llama-Factory 极速实战
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-11-21
AI基础 | Qwen3 0.6B 微调实现轻量级意图识别
2025-10-12
2025-10-14
2025-10-21
2025-09-24
2025-09-20
2025-09-25
2025-11-05
2025-11-05
2025-11-21
2025-12-04