微信扫码
添加专属顾问
我要投稿
Prefix Tuning和Prompt Tuning最大的区别就是向每层的Transformer Block添加可训练的张量,而上一期的Prompt Tuning只是在输入的时候添加。
此外,通过全连接层(具有两层的迷你MLP和介于两者之间的非线性激活函数)来进行桥接。下图左侧为原始的Transformer块,而右侧为添加之后的Prefix Tuning架构。
根据最初的Prefix Tuning的论文,这种技术实现了与全微调的性能,然而只需要训练0.1%的参数(当然当时它对标的是GPT-2模型)。有一种猜测它的表现如此的好,是因为它调整了较少的参数,有助于减少较小训练上面的过渡拟合。下面第一行为全部参数微调训练,第五行为Prefix Tuning。
其实这个家族还有一个叫做P-Tuning的,它分为1.0版本和2.0版本。1.0版本和Prompt Tuning的区别在于额外Token的填充位置,1.0在输入序列的任意位置插入可训练的连续提示向量,使用一个小型的神经网络(比如LSTM)来生成这些提示向量。2,.0在模型的每一层都添加了可训练的提示向量,类似于 Prefix-tuning,它简化了提示向量的生成方式,直接对这些向量进行优化,而不使用 LSTM。
2023年5月份的Adaptive Prefix Tuning提出新的架构,它将额外的prefix加在K和V的输入前面,<一直以来,相信读者都默认QKV的尺寸是相同的,这个时候只在K和V加上,能对得上尺寸么!>这里就留个家庭作业,让读者推敲一下,为什么是可行的~
下面为它的评测指标,分别在在SuperGLUE开发集和NER 测试集上进行。SuperGLUE的指标是准确率,其他是micro-f1分数。其中FT代表最普通的微调,PT-2就是上文中P-Tuning 2.0版本,而APT就是新提出的方法。结果表明这项技术还是可取的~
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-14
我微调了一个LangChain专家模型,离Vibe Agent又近了一步
2025-12-11
左脚踩右脚:大模型的有趣且简单的微调方式“SHADOW-FT”
2025-12-11
大模型训练的高效内存解决方案:流水线感知的细粒度激活卸载,实现显存开销与吞吐性能的联合最优
2025-12-08
一杯咖啡成本搞定多模态微调:FC DevPod + Llama-Factory 极速实战
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-11-21
AI基础 | Qwen3 0.6B 微调实现轻量级意图识别
2025-10-12
2025-10-14
2025-10-21
2025-09-24
2025-09-20
2025-09-25
2025-11-05
2025-11-05
2025-11-21
2025-12-04