微信扫码
添加专属顾问
我要投稿
from datasets import load_dataset# 下载并加载 GLUE 数据集的 MRPC 任务dataset = load_dataset('glue', 'mrpc')# 打印数据集的基本信息print(dataset)
from datasets import DatasetBuilder, BuilderConfigclass CustomDatasetBuilder(DatasetBuilder):BUILDER_CONFIGS = [BuilderConfig(name="custom_config", description="A custom dataset configuration")]def _info(self):return DatasetInfo(description="Custom dataset",features=Features({"text": Value(dtype="string"),"label": ClassLabel(names=["negative", "positive"])}))def _split_generators(self, dl_manager):# 实现数据下载和划分的逻辑passdef _generate_examples(self, filepath):# 实现数据生成的逻辑pass
from datasets import DatasetBuilderclass MyDatasetBuilder(DatasetBuilder):def _split_generators(self, dl_manager):# 下载数据集并返回数据划分return [SplitGenerator(name="train", gen_kwargs={"filepath": "path/to/train_data"}),SplitGenerator(name="test", gen_kwargs={"filepath": "path/to/test_data"})]def _generate_examples(self, filepath):# 从文件中读取数据并生成示例with open(filepath, "r") as file:for id_, line in enumerate(file):yield id_, {"text": line.strip(), "label": 1} # 示例标签
dataset = load_dataset('glue', 'mrpc', split='train') # 加载训练集from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)dataset = load_dataset('glue', 'mrpc')dataset = dataset.map(preprocess_function, batched=True)
def preprocess_function(examples):return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)# 使用 map 方法应用预处理函数processed_dataset = dataset.map(preprocess_function, batched=True)# 打印处理后的数据集样本print(processed_dataset)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-11
左脚踩右脚:大模型的有趣且简单的微调方式“SHADOW-FT”
2025-12-11
大模型训练的高效内存解决方案:流水线感知的细粒度激活卸载,实现显存开销与吞吐性能的联合最优
2025-12-08
一杯咖啡成本搞定多模态微调:FC DevPod + Llama-Factory 极速实战
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-11-21
AI基础 | Qwen3 0.6B 微调实现轻量级意图识别
2025-11-20
从零开始:手把手教你微调Embedding模型,让检索效果提升10倍!
2025-10-12
2025-10-14
2025-10-21
2025-09-24
2025-09-20
2025-09-25
2025-11-05
2025-11-05
2025-11-21
2025-12-04