微信扫码
添加专属顾问
我要投稿
01。
概述
02。
训练效率与性能
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "cerebras/Llama3-DocChat-1.0-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
system = "This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
instruction = "Please give a full and complete answer for the question."
document = """
# Cerebras Wafer-Scale Cluster
Exa-scale performance, single device simplicity
## AI Supercomputers
Condor Galaxy (CG), the supercomputer built by G42 and Cerebras, is the simplest and fastest way to build AI models in the cloud. With over 16 ExaFLOPs of AI compute, Condor Galaxy trains the most demanding models in hours rather than days. The terabyte scale MemoryX system natively accommodates 100 billion+ parameter models, making large scale training simple and efficient.
| Cluster | ExaFLOPs | Systems | Memory |
| -------- | -------- | -------- | ------ |
| CG1 | 4 | 64 CS-2s | 82 TB |
| CG2 | 4 | 64 CS-2s | 82 TB |
| CG3 | 8 | 64 CS-3s | 108 TB |
"""
question = "How many total CS systems does Condor Galaxy 1, 2, and 3 have combined, and how many flops does this correspond to?"
user_turn = f"""<context>
{document}
</context>
{instruction} {question}"""
messages = [
{"role": "system", "content": system},
{"role": "user", "content": user_turn}
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
03。
开源承诺
04。
基准比较
05。
面临的挑战与未来展望
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-11-21
AI基础 | Qwen3 0.6B 微调实现轻量级意图识别
2025-11-20
从零开始:手把手教你微调Embedding模型,让检索效果提升10倍!
2025-11-19
LoAR做Fine-Tuning微调原理到底是什么?
2025-11-05
2张4090竟能本地微调万亿参数Kimi K2!趋境联合清华北航把算力门槛击穿了
2025-11-05
基于昇腾NPU的Qwen3量化因子代码生成微调实战
2025-10-12
2025-10-14
2025-10-21
2025-09-09
2025-09-24
2025-09-20
2025-09-25
2025-11-05
2025-11-05
2025-11-21