微信扫码
添加专属顾问
我要投稿
大模型微调新思路:利用Base模型提升Instruct模型性能,简单高效且不增加额外参数。核心内容: 1. Base与Instruct模型权重高度相似的科学发现 2. Shadow-FT框架的微调迁移机制 3. 实验验证与传统微调方法的性能对比
大语言模型的微调主要分为两类:全参数微调和参数高效微调(lora等)。直接对 Instruct 模型进行调优通常仅带来微小的提升,甚至导致性能退化。Base 模型与Instruct 模型权重值高度相似。Base 模型往往是一个良好的学习器,但在后训练前较弱。因此,通过利用对应的Base 模型来调优 Instruct 模型。核心思想是先微调 Base 模型,然后将学成的权重更新 直接赋予 Instruct 模型。正就是Shadow-FT 理念,不引入额外参数,实现简单。
相对差距比**来量化权重相似度,公式为:
其中为元素级求和,为绝对值运算。取值范围为0-1,代表两个模型权重完全一致,代表权重差异极大。
如上图,配对的BASE和INSTRUCT模型权重相似度极高,说明BASE和INSTRUCT模型的权重结构高度重合,因此得出结论,通过BASE模型辅助INSTRUCT模型微调可行。
Shadow-FT的核心逻辑是:利用BASE和INSTRUCT模型的权重相似性,先对BASE模型进行微调以获取优质的参数更新量,再将该更新量直接迁移到INSTRUCT模型上,从而避免直接微调INSTRUCT模型带来的性能退化问题。流程如下,比较简单:
其中代表微调操作,为BASE模型原始权重。
传统INSTRUCT模型微调的公式为:
对比可知,Shadow-FT与传统微调的训练成本完全一致,唯一区别在于:传统方法从INSTRUCT模型自身学习参数更新量,而Shadow-FT从BASE模型学习更新量再迁移。
参考文献:SHADOW-FT: TUNING INSTRUCT MODEL VIA TRAINING ON PAIRED BASE MODEL,https://arxiv.org/pdf/2505.12716v3
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-11
大模型训练的高效内存解决方案:流水线感知的细粒度激活卸载,实现显存开销与吞吐性能的联合最优
2025-12-08
一杯咖啡成本搞定多模态微调:FC DevPod + Llama-Factory 极速实战
2025-12-04
OpenAI公开新的模型训练方法:或许能解决模型撒谎问题,已在GPT-5 thiking验证
2025-11-23
微调Rerank模型完整指南
2025-11-22
大模型微调全流程实战指南:基于IPO框架的深度解析与优化
2025-11-21
AI基础 | Qwen3 0.6B 微调实现轻量级意图识别
2025-11-20
从零开始:手把手教你微调Embedding模型,让检索效果提升10倍!
2025-11-19
LoAR做Fine-Tuning微调原理到底是什么?
2025-10-12
2025-10-14
2025-10-21
2025-09-24
2025-09-20
2025-09-25
2025-11-05
2025-11-05
2025-11-21
2025-12-04