微信扫码
添加专属顾问
我要投稿
从新闻到知识图谱的AI魔法:揭秘如何用大模型打造科技并购分析神器,让海量信息秒变结构化知识!核心内容: 1. 新闻转知识图谱的完整八步流程解析 2. 关键步骤实战技巧:从数据清洗到关系抽取 3. 大模型与传统NLP技术的创新结合应用
❝一句话摘要:本文带你用现代NLP和知识图谱技术,把科技公司并购新闻变成结构化的知识大脑,过程全景揭秘,理论与实战齐飞,代码只用伪代码,干货与段子齐发,助你成为AI知识工程老司机!
想象一下,你是个投资分析师,老板让你一周内梳理全球科技并购大事件,找出谁在买谁、花了多少钱、背后有哪些大佬、涉及哪些新技术……你会怎么做?
如果你选C,恭喜你,已经站在了AI知识工程的风口浪尖。今天我们就来拆解一条“新闻到知识图谱”的全流程管道,看看如何用大模型+传统NLP+知识工程,优雅地把海量新闻变成结构化知识。
整个流程可以拆成八大阶段,每一步都暗藏玄机:
下面我们逐步拆解,每一步都用理论+伪代码+实战思路,穿插一些老司机的经验和吐槽。
def acquire_articles(dataset, keywords, sample_size):
# 加载数据集
articles = load_dataset(dataset)
# 关键词过滤
filtered = [a for a in articles if any(k in a['text'].lower() for k in keywords)]
# 随机采样
return random.sample(filtered, sample_size)
def clean_text(raw_text):
text = remove_prefixes(raw_text)
text = remove_html_tags(text)
text = remove_urls(text)
text = normalize_whitespace(text)
return text
# 1. 用spaCy统计实体分布
entity_counts = spacy_ner_stats(cleaned_articles)
# 2. 用LLM筛选最相关的实体类型
relevant_types = llm_select_entity_types(entity_counts)
# 3. 用LLM对每篇文章做定向NER
for article in cleaned_articles:
entities = llm_ner(article['cleaned_text'], relevant_types)
article['entities'] = entities
for article in articles_with_entities:
relations = llm_relation_extraction(article['cleaned_text'], article['entities'])
article['relations'] = relations
def normalize_entity(text, type):
if type == 'ORG':
text = remove_suffixes(text, ['Inc.', 'Ltd.', 'LLC', ...])
return text.strip()
# 生成URI
entity_uri = f"http://example.org/kg/{normalize_entity(text, type)}_{type}"
for article in articles_with_normalized_entities:
article_uri = gen_article_uri(article['id'])
kg.add((article_uri, rdf_type, schema.Article))
for entity in article['entities']:
kg.add((entity['uri'], rdf_type, map_type(entity['type'])))
kg.add((article_uri, schema.mentions, entity['uri']))
for rel in article['relations']:
kg.add((rel['subject_uri'], map_predicate(rel['predicate']), rel['object_uri']))
entity_texts = [e['normalized_text'] for e in unique_entities]
embeddings = llm_get_embeddings(entity_texts)
for e1, e2 in combinations(unique_entities, 2):
sim = cosine_similarity(embeddings[e1], embeddings[e2])
if sim > threshold:
kg.add((e1['uri'], ex.isSimilarTo, e2['uri']))
# 存储
kg.serialize('tech_acquisitions_kg.ttl', format='turtle')
# 查询
results = kg.query("""
SELECT ?org ?label WHERE {
?org a schema:Organization ;
rdfs:label ?label .
}
""")
# 可视化
visualize_kg_pyvis(kg, sample_size=75)
本文用一条“新闻到知识图谱”的流水线,串起了大模型、NLP、知识工程的精华。你可以把它当成AI知识工程的“八段锦”,也可以作为落地项目的蓝图。未来,随着大模型和知识图谱的深度融合,AI将不只是“会说话”,更能“懂世界”,助你在数据洪流中,洞察先机,决胜千里!
如果你觉得本文有料,欢迎点赞、转发、关注本号,更多AI知识工程干货,敬请期待!
彩蛋:你还想看哪些领域的知识图谱实战?留言区见!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-05-06
2025-04-21
2025-05-23
2025-05-15
2025-04-09
2025-05-28
2025-04-15
2025-04-13
2025-05-20
2025-04-15
2025-06-14
2025-05-23
2025-05-23
2025-05-22
2025-05-20
2025-04-20
2025-04-15
2025-04-09