微信扫码
添加专属顾问
我要投稿
Langchain-core:提供基本支撑,支持并行处理、追踪、回调、批量、流式操作、同步等功能。
Langchain-community:整合第三方工具,如模型操作、提示词模板、文件解析、分块、向量化、embedding 等。
Langchain:提供链(Chains)和代理(Agents),用于处理复杂业务逻辑和与外部 API 交互。
2. LangChain Templates:提供一系列容易部署的参考架构,适用于各种任务。
3. LangServe:用于将 LangChain 链部署为 REST API 的库。
4. LangSmith:开发者平台,可提供调试、测试、评估和监控基于任何语言模型框架构建的链,并能无缝与 LangChain 集成。
以下样例展示了如何安装依赖、导入模块、进行 LCEL 语法操作以及引入输出解析器。
# 安装依赖 pip install langchain langchain-openai
from langchain_openai import ChatOpenAI
# 确认环境变量中已经配置OPENAI_API_KEY
llm = ChatOpenAI()
# 导入提示词模板
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
("system", "You are world class technical documentation writer."),
("user", "{input}")
])
# LCEL语法操作
chain = prompt | llm
chain.invoke({"input": "how can langsmith help with testing?"})
# 引入输出解析器
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()
chain = prompt | llm | output_parser
chain.invoke({"input": "how can langsmith help with testing?"})
LangChain 作为大模型应用的构建框架,通过解决诸多开发中的问题,为大模型应用的开发提供了有效解决方案。它帮助开发者在语言模型领域实现了许多复杂操作,让构建现代、高效、安全的语言模型应用变得更加轻松。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-30
LangChain如何使用通义千问的向量模型
2025-08-29
Claude code prompt原来这么写的,怪不得这么厉害
2025-08-27
从LangChain到LangGraph:AI智能体提示词工程的系统化学习
2025-08-25
Agent实战教程:LangGraph相关概念介绍以及快速入门
2025-08-23
企业级复杂任务智能体构建:解锁LangChain新品Deep Agents及其UI利器
2025-08-20
使用LLamaIndex Workflow来打造水墨风格图片生成工作流
2025-08-19
让 LangChain 知识图谱抽取更聪明:BAML 模糊解析助力升级
2025-08-17
Manus、LangChain一手经验:先别给Multi Agent判死刑,是你不会管理上下文
2025-07-14
2025-06-26
2025-07-14
2025-07-16
2025-06-16
2025-08-19
2025-06-26
2025-06-13
2025-06-16
2025-06-11
2025-07-14
2025-07-13
2025-07-05
2025-06-26
2025-06-13
2025-05-21
2025-05-19
2025-05-08