微信扫码
添加专属顾问
我要投稿
ReadingBank数据集:通过自动化的方式从微软WORD文档的XML格式中提取阅读顺序信息,简化了数据准备过程。得到了一个包含500,000个真实世界文档图像的基准数据集,为阅读顺序检测提供了大规模、高质量的标注数据。
LayoutReader模型:提出了一个新的阅读顺序预测模型,使用序列到序列模型编码文本和布局信息,生成阅读顺序索引序列。
Introduction
# 构建ReadingBank
文本和布局信息融合:LayoutReader 通过结合文本内容和布局信息,提高了阅读顺序检测的准确性。
布局感知编码:使用 LayoutLM 作为编码器,LayoutReader 能够理解文档的布局结构,这对于复杂文档的阅读顺序检测至关重要。
精细控制的自注意力机制:通过精心设计的自注意力掩码,LayoutReader 有效地控制了编码阶段的信息流,防止了不正确的阅读顺序信息的干扰。
高效的解码策略:在解码阶段,LayoutReader 通过预测源序列中的索引,简化了解码过程,并提高了生成阅读顺序的准确性。
但仍然存在以下缺点:
代码中有许多实验性质的代码,组织不够清晰,训练和部署都很困难。
seq2seq在生产环境中速度太慢,我们希望一次性完成所有预测
预训练模型的输入是英文单词级别,但实际情况并非如此。真正的输入应该是PDF解析器或OCR提取的文本片段(行级别或者段级别)。
这里推荐其他作者基于HF的Transformers里的LayoutLMV3实现的LayoutReader:
https://github.com/ppaanngggg/layoutreader
重构代码,使用transformers库中的LayoutLMv3ForTokenClassification进行训练和评估。
提供一个脚本,将原始的单词级别数据集转换为文本片段级别数据集。
实现一个更好的后处理程序,以避免重复预测。
根据作者readme的介绍,其改进后的版本仅使用box框,没有使用text信息,也做到了和论文中相当的水平。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-11
别再存轨迹了:SkillRL 让 Agent 把经验炼成技能,还会自我进化
2026-02-11
Claude Code 源码揭秘:为什么它能无感切换 AWS、Google、Azure
2026-02-11
全新DeepSeek发布!上下文扩展至1M
2026-02-11
刚刚,DeepSeek悄悄测试新模型:百万token上下文、知识库更新,V4要来了?
2026-02-11
DeepSeek V4 悄咪咪上线了?1M 上下文简直爽翻!
2026-02-11
2026 企业级AI(Agentic AI for Enterprise),是新大陆
2026-02-11
深度求索突然出手!1M上下文碾压GPT-4?国内AI迎来全新突破
2026-02-11
从 Clawdbot 到 OpenClaw :揭秘 AI Agent 的三重生态系统供应链风险
2026-01-24
2026-01-10
2025-11-19
2026-01-26
2026-01-01
2025-12-09
2025-12-21
2026-01-09
2025-11-15
2026-01-09
2026-02-11
2026-02-11
2026-02-11
2026-02-11
2026-02-07
2026-02-04
2026-02-03
2026-02-03