微信扫码
添加专属顾问
我要投稿
探索MCP与Function Calling在大模型中的差异与联系,理解MCP如何优化智能体系统。 核心内容: 1. Function Calling的上下文爆炸风险与解决方案 2. MCP在大模型Function Calling中的应用与优势 3. MCP初始化流程与按需加载机制
函数定义本身会计入模型上下文。OpenAI 在官方说明中明确写道:“functions 会被注入到 system message 中,因此它们会占用上下文并按输入 token 计费;如果遇到上下文极限,应当减少函数数量或精简参数描述。”
只要所有输入 token(系统提示 + 函数列表 + 对话历史 + 用户提问)之和没有超过所选模型的最大上下文窗口,就不会触发 context_length_exceeded 错误;反之就会报错。
真正会爆的是:
MCP 对大模型 Function Calling 的意义
在 LLM 首轮交互时,客户端只将“user query + system message(default prompt & history context & capabilities)”传入,由LLM 判断是否需要调用工具或访问资源。只有当需要调用工具或访问资源时,客户端才会再将“具体的 tool 或 resource 的 JSON Schema 传入给LLM,让 LLM 生成 tool 或 resource 的参数。
分层调用
MCP 通过客户端与服务端的职责分离,为“执行层”提供了统一的 JSON-RPC 规范,支持动态列举与调用工具(tools/list → tools/call),这样工具的元数据可以在“模型外”维护,而不是每轮对话都放进上下文。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-01-05
刚刚,蝉联Future X全球榜首的MiroMind发布全球最强搜索智能体模型
2026-01-05
这大概就是Skills能够降维打击n8n的原因吧!
2026-01-05
HiMarket 重磅升级:Agent 的下一站,AI 开放平台
2026-01-05
Skills比MCP更重要?更省钱的多!Python大佬这观点老金测了一周终于懂了
2026-01-05
对比 GLM 4.7 和 MiniMax 写代码,我看到了不同的 AI 人格
2026-01-04
字节Seed:大概念模型来了,推理的何必是下一个token
2026-01-04
MIT团队推出递归语言模型!不改架构、不扩窗口,上下文处理能力扩展百倍
2026-01-04
MIT发现让AI变聪明的秘密,竟然和人类一模一样
2025-10-26
2025-11-19
2025-10-20
2025-11-13
2025-10-18
2025-10-11
2025-10-21
2025-10-15
2025-10-09
2025-11-03
2026-01-02
2025-12-31
2025-12-31
2025-12-31
2025-12-30
2025-12-30
2025-12-25
2025-12-25