微信扫码
添加专属顾问
我要投稿
Google GenAI Processors革新AI开发流程,让复杂多模态应用构建更高效可靠。 核心内容: 1. ProcessorParts数据结构标准化多模态数据处理 2. 异步流处理与双向流控制实现高效运算 3. 统一Processor接口提供强大组合能力
class ProcessorPart: content: ProcessorContent # 实际数据载荷 metadata: Dict[str, Any] # 元数据字典 mime_type: str # MIME类型标识 timestamp: float # 时间戳 sequence_id: str # 序列标识符
async def process_stream(input_stream: AsyncIterator[ProcessorPart]) -> AsyncIterator[ProcessorPart]: async for part in input_stream: # 处理每个部分 processed_part = await transform_part(part) yield processed_part
class BidirectionalProcessor: async def process(self, input_stream, feedback_stream): # 同时处理输入和反馈 async for input_part, feedback_part in zip(input_stream, feedback_stream): result = await self.handle_with_feedback(input_part, feedback_part) yield result
class Processor(ABC): @abstractmethod async def process(self, input_stream: AsyncIterator[ProcessorPart]) -> AsyncIterator[ProcessorPart]: pass def __call__(self, input_stream): return self.process(input_stream)
# 处理链组合audio_processor = AudioTranscriber()text_processor = TextAnalyzer()response_generator = ResponseGenerator()# 链式处理async def process_audio_input(audio_stream): transcribed = audio_processor(audio_stream) analyzed = text_processor(transcribed) responses = response_generator(analyzed) return responses
1. 同步文本处理from genai_processors.models import GeminiTextProcessortext_processor = GeminiTextProcessor( model_name="gemini-pro", api_key="your-api-key", temperature=0.7, max_tokens=1000)async def process_text_query(query: str): input_part = ProcessorPart( content=TextContent(query), metadata={"user_id": "123", "session_id": "abc"} ) async for response_part in text_processor(async_iter([input_part])): return response_part.content.text2. Live API流式处理from genai_processors.models import GeminiLiveProcessorlive_processor = GeminiLiveProcessor( model_name="gemini-live", api_key="your-api-key", streaming=True, real_time_factor=1.0)async def handle_live_audio(audio_stream): async for audio_chunk in audio_stream: input_part = ProcessorPart( content=AudioContent(audio_chunk), metadata={"format": "wav", "sample_rate": 16000} ) async for response in live_processor(async_iter([input_part])): if response.content.type == "audio": yield response.content.audio_data elif response.content.type == "text": print(f"Transcription: {response.content.text}")
class AsyncModelProcessor: async def process_batch(self, inputs: List[ProcessorPart]): # 并发处理多个输入 tasks = [self.process_single(input_part) for input_part in inputs] results = await asyncio.gather(*tasks) return results async def process_single(self, input_part: ProcessorPart): # 异步API调用 async with aiohttp.ClientSession() as session: response = await session.post(self.api_endpoint, json=input_part.to_dict()) return ProcessorPart.from_response(await response.json())
+
运算符组合输入源和处理步骤,从而创建清晰的数据流from genai_processors.core import audio_io, live_model, video# Input processor: combines camera streams and audio streamsinput_processor = video.VideoIn() + audio_io.PyAudioIn(...)# Output processor: plays the audio parts. Handles interruptions and pauses# audio output when the user is speaking.play_output = audio_io.PyAudioOut(...)# Gemini Live API processorlive_processor = live_model.LiveProcessor(...)# Compose the agent: mic+camera -> Gemini Live API -> play audiolive_processor = live_model.LiveProcessor(...)live_agent = input_processor + live_processor + play_outputasync for part in live_agent(streams.endless_stream()): # Process the output parts (e.g., print transcription, model output, metadata) print(part)
class BatchProcessor: def __init__(self, batch_size: int = 32, max_concurrency: int = 10): self.batch_size = batch_size self.semaphore = asyncio.Semaphore(max_concurrency) async def process_batch(self, input_stream): batch = [] async for item in input_stream: batch.append(item) if len(batch) >= self.batch_size: async with self.semaphore: results = await self.process_batch_items(batch) for result in results: yield result batch = [] if batch: async with self.semaphore: results = await self.process_batch_items(batch) for result in results: yield result
class CustomAudioProcessor(Processor): def __init__(self, model_path: str, config: Dict[str, Any]): self.model = load_model(model_path) self.config = config async def process(self, input_stream: AsyncIterator[ProcessorPart]) -> AsyncIterator[ProcessorPart]: async for part in input_stream: # 验证输入类型 if not isinstance(part.content, AudioContent): raise ValueError(f"Expected AudioContent, got {type(part.content)}") audio_data = await self.preprocess_audio(part.content.audio_data) result = await self.model.predict(audio_data) # 创建输出ProcessorPart output_part = ProcessorPart( content=TextContent(result.transcription), metadata={ **part.metadata, 'confidence': result.confidence, 'processing_time': result.processing_time } ) yield output_part async def preprocess_audio(self, audio_data: bytes) -> np.ndarray: # 音频预处理逻辑 audio_array = np.frombuffer(audio_data, dtype=np.int16) # 标准化 audio_array = audio_array.astype(np.float32) / 32768.0 # 重采样到目标频率 if self.config.get('target_sample_rate'): audio_array = resample(audio_array, self.config['target_sample_rate']) return audio_arrayPartProcessor的高级用法对于需要更细粒度控制的场景,可以使用PartProcessor:class AdvancedPartProcessor(PartProcessor): async def process_part(self, part: ProcessorPart) -> AsyncIterator[ProcessorPart]: # 检查是否需要分割大型数据 if part.content.size > self.max_chunk_size: # 分割为较小的块 chunks = await self.split_content(part.content) for i, chunk in enumerate(chunks): chunk_part = ProcessorPart( content=chunk, metadata={ **part.metadata, 'chunk_index': i, 'total_chunks': len(chunks) } ) processed_chunk = await self.process_chunk(chunk_part) yield processed_chunk else: # 直接处理小数据 result = await self.process_single_part(part) yield result
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-29
独家|阿里AI再加码,夸克研发全新AI产品“造点”
2025-08-29
大模型推理上半场收官:单实例优化见顶,迈向低时延×长上下文
2025-08-29
OpenAI发布GPT Realtime:语音大模型正式进入Voice Agent时代,可以直接调用接口和工具进行实时语音对话!
2025-08-29
从“无能助手”到“智能小伙伴”:MiniMax Agent 亲测体验
2025-08-29
我做 AI 产品经理这几年的经验分享
2025-08-28
Claude Code 也来梦幻联动 Zed了!
2025-08-28
AI 原力注入:AI Infra 知识体系 v2.0
2025-08-28
微软研究院:生成式AI如何重塑职场,你的工作受影响了吗?
2025-08-21
2025-06-01
2025-06-21
2025-08-21
2025-08-19
2025-06-07
2025-06-12
2025-06-19
2025-06-13
2025-07-29
2025-08-28
2025-08-28
2025-08-28
2025-08-28
2025-08-27
2025-08-26
2025-08-25
2025-08-25