微信扫码
添加专属顾问
我要投稿
DeepSeek开源FlashMLA,GPU性能革命性提升。 核心内容: 1. DeepSeek开源FlashMLA,专为英伟达Hopper GPU深度优化 2. 核心技术MLA架构,显著提升长上下文推理效率 3. 实测性能突破,内存带宽和计算性能均接近硬件极限
MLA架构(Multi-head Latent Attention):通过改造注意力机制,压缩KV Cache大小,减少内存占用,从而在相同硬件条件下支持更长的上下文处理。标准Transformer的KV Cache随序列长度线性增长(复杂度O(n²)),导致长上下文场景下内存爆炸。潜在注意力压缩:通过低秩投影(Low-rank Projection)将多头注意力中的K/V矩阵压缩至潜在空间,将KV Cache体积减少60%-80%(例如原需40GB缓存可压缩至8-16GB)。
分页KV缓存(块大小64):采用精细的内存管理策略,提升缓存利用率,降低延迟。
BF16精度支持:兼顾计算性能与内存效率,适配当前主流AI硬件需求。
在H800 SXM5 GPU上的实测数据显示
内存带宽:内存受限场景下达到3000 GB/s,远超H800理论带宽上限(600 GB/s),接近硬件物理极限。
计算性能:计算受限场景下实现580 TFLOPS,逼近Hopper架构的理论峰值。
这一优化使大模型推理速度显著提升,尤其适用于实时生成任务(如聊天机器人、文本生成),同时降低部署成本
DeepSeek公布的对比实验数据揭示了FlashMLA的显著优势
FlashMLA不仅在训练阶段显著降低成本,更在长上下文推理场景中实现突破。其核心技术在于:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-31
字节打响 Agent 平台战!Coze扣子、n8n、Dify谁是终点?
2025-07-31
Coze开源后,我用LLM+OCR做了一个文档智能问答Agent
2025-07-31
字节开源“扣子”,企业数字化转型的新机遇!
2025-07-31
一个不卷大模型的清华学霸,率先用AI赚到了钱
2025-07-31
阿里刚刚开源Qwen3新思考模型:Agent能力超强,支持100万上下文
2025-07-30
Coze:打造智能高效的股票交易系统
2025-07-30
阿里云Qwen3重大升级,已全面超越DeepSeek与Kimi
2025-07-30
更强的 Qwen3-Coder 来了,都用上了吗?
2025-07-23
2025-06-17
2025-06-17
2025-07-23
2025-07-14
2025-07-12
2025-05-29
2025-05-12
2025-05-14
2025-05-20
2025-07-31
2025-07-30
2025-07-30
2025-07-30
2025-07-29
2025-07-29
2025-07-28
2025-07-28