微信扫码
添加专属顾问
我要投稿
自适应RAG系统让本地LLM更智能,灵活切换检索策略解决知识更新难题。 核心内容: 1. RAG技术的局限与自适应RAG的创新设计 2. 基于LangGraph+Ollama的Web搜索与自纠错双分支架构 3. 从环境配置到知识库构建的完整实现路径
大模型越来越强大,但它们依旧有一个致命短板:知识更新慢。如果直接问 ChatGPT 之类的模型一个近期事件的问题,它很可能答不上来。这就是为什么 RAG(检索增强生成) 变得重要 —— 在回答问题之前,先去找相关资料,再让模型结合这些资料生成答案。
不过,RAG 并不是“一刀切”的方案:有些问题根本不需要检索(比如定义类问题),有些问题需要一次检索就能解决,而另一些则需要多次尝试(比如先改写问题,再检索)。这就是 自适应RAG 的核心:根据问题的不同,动态选择最合适的策略。
本文我们将用 LangGraph + 本地 LLM(Ollama + Mistral) 搭建一个 Adaptive RAG 系统,能在 Web 搜索 和 向量库检索 之间灵活切换,还能自我纠错。
注意:我们的 Adaptive RAG 系统有两个主要分支:
Web Search:处理最近事件相关的问题(因为向量库的数据是历史快照,不会包含最新信息)。借助 Tavily 搜索 API 获取网页结果,再交给 LLM 组织答案。
Self-Corrective RAG:针对我们自己构建的知识库(这里我们抓取了 Lilian Weng 的几篇经典博客:Agent、Prompt Engineering、Adversarial Attack)。向量库用 Chroma 搭建,文本向量用 Nomic 本地 Embedding 生成。如果第一次检索结果不相关,会尝试改写问题,再次检索。同时会过滤掉“答非所问”的文档,避免垃圾结果。
%capture --no-stderr%pip install -U langchain-nomic langchain_community tiktoken langchainhub chromadb langchain langgraph tavily-python nomic[local]
import getpass, os
def _set_env(var: str):
if not os.environ.get(var):
os.environ[var] = getpass.getpass(f"{var}: ")
_set_env("TAVILY_API_KEY")
_set_env("NOMIC_API_KEY")
我们将要构建了一个 向量数据库,内容是 Lilian Weng 的三篇博客。以后凡是涉及 Agent/Prompt Engineering/Adversarial Attack
的问题,就走这里。
# Ollama 模型
local_llm = "mistral"
# 文本切分 & 向量化
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_nomic.embeddings import NomicEmbeddings
urls = [
"https://lilianweng.github.io/posts/2023-06-23-agent/",
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
]
docs = [WebBaseLoader(url).load() for url in urls]
docs_list = [item for sublist in docs for item in sublist]
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=250, chunk_overlap=0
)
doc_splits = text_splitter.split_documents(docs_list)
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=NomicEmbeddings(model="nomic-embed-text-v1.5", inference_mode="local"),
)
retriever = vectorstore.as_retriever()
3. 问题路由器(Router)
假如这个问题和 Agent 相关,所以走向量库。
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import JsonOutputParser
llm = ChatOllama(model=local_llm, format="json", temperature=0)
prompt = PromptTemplate(
template="""You are an expert at routing a user question to a vectorstore or web search...
Question to route: {question}""",
input_variables=["question"],
)
question_router = prompt | llm | JsonOutputParser()
question = "llm agent memory"
print(question_router.invoke({"question": question}))
执行结果
{'datasource': 'vectorstore'}
retrieval_grader = prompt | llm | JsonOutputParser()question = "agent memory"docs = retriever.get_relevant_documents(question)doc_txt = docs[1].page_contentprint(retrieval_grader.invoke({"question": question, "document": doc_txt}))
执行结果
{'score': 'yes'}
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
prompt = hub.pull("rlm/rag-prompt")
llm = ChatOllama(model=local_llm, temperature=0)
rag_chain = prompt | llm | StrOutputParser()
question = "agent memory"
generation = rag_chain.invoke({"context": docs, "question": question})
print(generation)
执行结果
In an LLM-powered autonomous agent system, the Large Language Model (LLM) functions as the agent's brain...
hallucination_grader = prompt | llm | JsonOutputParser()hallucination_grader.invoke({"documents": docs, "generation": generation})
执行结果
{'score': 'yes'}
answer_grader.invoke({"question": question, "generation": generation})
执行结果
{'score': 'yes'}
question_rewriter.invoke({"question": question})
'What is agent memory and how can it be effectively utilized in vector database retrieval?'
from langchain_community.tools.tavily_search import TavilySearchResultsweb_search_tool = TavilySearchResults(k=3)
---ROUTE QUESTION---What is the AlphaCodium paper about?{'datasource': 'web_search'}---ROUTE QUESTION TO WEB SEARCH------WEB SEARCH---"Node 'web_search':"'---'---GENERATE------CHECK HALLUCINATIONS------DECISION: GENERATION IS GROUNDED IN DOCUMENTS------GRADE GENERATION vs QUESTION------DECISION: GENERATION ADDRESSES QUESTION---"Node 'generate':"'---'('The AlphaCodium paper introduces a new approach for code generation...')
10.工作流(LangGraph 具体实现)
我们用 LangGraph 把这些步骤连起来,形成一个有条件分支的工作流:
开始 → 判断走 Web Search 还是 Vectorstore
如果走 Vectorstore:检索 → 文档过滤 →
如果靠谱 → 返回结果
如果不靠谱 → 改写问题 → 再检索
如果没文档:改写问题 → 再检索
如果有文档:生成答案 → 检查是否靠谱
如果走 Web Search:直接搜 → 生成答案 → 检查 → 返回结果
最终,系统能在不同类型的问题上灵活切换,而不是死板地“一问一搜”。
from typing import Listfrom typing_extensions import TypedDictclass GraphState(TypedDict): """ Represents the state of our graph. Attributes: question: question generation: LLM generation documents: list of documents """ question: str generation: str documents: List[str] ### Nodesfrom langchain.schema import Documentdef retrieve(state): """ Retrieve documents Args: state (dict): The current graph state Returns: state (dict): New key added to state, documents, that contains retrieved documents """ print("---RETRIEVE---") question = state["question"] # Retrieval documents = retriever.get_relevant_documents(question) return {"documents": documents, "question": question}def generate(state): """ Generate answer Args: state (dict): The current graph state Returns: state (dict): New key added to state, generation, that contains LLM generation """ print("---GENERATE---") question = state["question"] documents = state["documents"] # RAG generation generation = rag_chain.invoke({"context": documents, "question": question}) return {"documents": documents, "question": question, "generation": generation}def grade_documents(state): """ Determines whether the retrieved documents are relevant to the question. Args: state (dict): The current graph state Returns: state (dict): Updates documents key with only filtered relevant documents """ print("---CHECK DOCUMENT RELEVANCE TO QUESTION---") question = state["question"] documents = state["documents"] # Score each doc filtered_docs = [] for d in documents: score = retrieval_grader.invoke( {"question": question, "document": d.page_content} ) grade = score["score"] if grade == "yes": print("---GRADE: DOCUMENT RELEVANT---") filtered_docs.append(d) else: print("---GRADE: DOCUMENT NOT RELEVANT---") continue return {"documents": filtered_docs, "question": question}def transform_query(state): """ Transform the query to produce a better question. Args: state (dict): The current graph state Returns: state (dict): Updates question key with a re-phrased question """ print("---TRANSFORM QUERY---") question = state["question"] documents = state["documents"] # Re-write question better_question = question_rewriter.invoke({"question": question}) return {"documents": documents, "question": better_question}def web_search(state): """ Web search based on the re-phrased question. Args: state (dict): The current graph state Returns: state (dict): Updates documents key with appended web results """ print("---WEB SEARCH---") question = state["question"] # Web search docs = web_search_tool.invoke({"query": question}) web_results = "\n".join([d["content"] for d in docs]) web_results = Document(page_content=web_results) return {"documents": web_results, "question": question}### Edges ###def route_question(state): """ Route question to web search or RAG. Args: state (dict): The current graph state Returns: str: Next node to call """ print("---ROUTE QUESTION---") question = state["question"] print(question) source = question_router.invoke({"question": question}) print(source) print(source["datasource"]) if source["datasource"] == "web_search": print("---ROUTE QUESTION TO WEB SEARCH---") return "web_search" elif source["datasource"] == "vectorstore": print("---ROUTE QUESTION TO RAG---") return "vectorstore"def decide_to_generate(state): """ Determines whether to generate an answer, or re-generate a question. Args: state (dict): The current graph state Returns: str: Binary decision for next node to call """ print("---ASSESS GRADED DOCUMENTS---") state["question"] filtered_documents = state["documents"] if not filtered_documents: # All documents have been filtered check_relevance # We will re-generate a new query print( "---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---" ) return "transform_query" else: # We have relevant documents, so generate answer print("---DECISION: GENERATE---") return "generate"def grade_generation_v_documents_and_question(state): """ Determines whether the generation is grounded in the document and answers question. Args: state (dict): The current graph state Returns: str: Decision for next node to call """ print("---CHECK HALLUCINATIONS---") question = state["question"] documents = state["documents"] generation = state["generation"] score = hallucination_grader.invoke( {"documents": documents, "generation": generation} ) grade = score["score"] # Check hallucination if grade == "yes": print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---") # Check question-answering print("---GRADE GENERATION vs QUESTION---") score = answer_grader.invoke({"question": question, "generation": generation}) grade = score["score"] if grade == "yes": print("---DECISION: GENERATION ADDRESSES QUESTION---") return "useful" else: print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---") return "not useful" else: pprint("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
from langgraph.graph import END, StateGraph, STARTworkflow = StateGraph(GraphState)# Define the nodesworkflow.add_node("web_search", web_search) # web searchworkflow.add_node("retrieve", retrieve) # retrieveworkflow.add_node("grade_documents", grade_documents) # grade documentsworkflow.add_node("generate", generate) # generateworkflow.add_node("transform_query", transform_query) # transform_query# Build graphworkflow.add_conditional_edges( START, route_question, { "web_search": "web_search", "vectorstore": "retrieve", },)workflow.add_edge("web_search", "generate")workflow.add_edge("retrieve", "grade_documents")workflow.add_conditional_edges( "grade_documents", decide_to_generate, { "transform_query": "transform_query", "generate": "generate", },)workflow.add_edge("transform_query", "retrieve")workflow.add_conditional_edges( "generate", grade_generation_v_documents_and_question, { "not supported": "generate", "useful": END, "not useful": "transform_query", },)# Compileapp = workflow.compile()
inputs = {"question": "What is the AlphaCodium paper about?"}for output in app.stream(inputs): for key, value in output.items(): pprint(f"Node '{key}':") pprint("\n---\n")pprint(value["generation"])
执行结果
---ROUTE QUESTION---What is the AlphaCodium paper about?{'datasource': 'web_search'}---ROUTE QUESTION TO WEB SEARCH------WEB SEARCH---"Node 'web_search':"'---'---GENERATE------CHECK HALLUCINATIONS------DECISION: GENERATION IS GROUNDED IN DOCUMENTS------GRADE GENERATION vs QUESTION------DECISION: GENERATION ADDRESSES QUESTION---"Node 'generate':"'---'('The AlphaCodium paper introduces a new approach for code generation...')
我们写的这套 自适应 RAG 系统展示了几个关键点:
灵活路由:不同问题走不同管道(Web / Vectorstore)。
自我纠错:检索结果不相关时,自动改写问题再试。
质量把控:通过“幻觉检测 + 答案有用性判断”,尽量避免胡编乱造。
本地化:Embedding 和 LLM 都可以跑在本地(隐私友好,节省成本)。
未来可以扩展的方向包括:增加“多步推理”路线(先子问题分解,再检索)。更细的路由分类(比如结构化查询 vs 自然语言查询)。融合图数据库或知识图谱,增强事实性。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-08-28
万字长文详解优图RAG技术
2025-08-28
使用RAG构建高质量知识库(四)- 数据检索
2025-08-28
RAG检索后如何应用更有效?
2025-08-28
RAG 不止能检索!它还能在 LangGraph 中当“工具调用大脑”
2025-08-28
RAG进阶神技:让AI自动将“人话”翻译成SQL和Cypher查询!
2025-08-28
如何将 RAG 检索召回率从 50% 提高到 95% 以上
2025-08-28
告别“搜不到、搜不准”:用这套查询优化,让你的RAG检索召回率飙升
2025-08-28
比RAG提升27.4%,阿里等ComRAG利用“质心式”记忆机制实现实时社区问答
2025-06-05
2025-06-06
2025-06-05
2025-06-05
2025-06-20
2025-06-20
2025-06-24
2025-07-15
2025-06-24
2025-06-05