支持私有化部署
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


RAG与微调,大语言模型的“大脑升级”,该选哪条路?(小白科普)

发布日期:2025-05-20 13:19:10 浏览次数: 1546 作者:口袋大数据
推荐语

理解大语言模型的“大脑升级”技术,选择适合的场景应用。

核心内容:
1. RAG和微调的定义及其工作原理
2. RAG和微调在知识处理和资源需求上的差异
3. 不同场景下RAG和微调的适用性分析

杨芳贤
53A创始人/腾讯云(TVP)最具价值专家

最近在做项目时,我发现有些甲方对RAG和模型微调分区的不太清楚,明明大语言模型(LLM)加挂RAG就可以解决的问题,却坚持要微调,但是具体沟通后发现,其实只是不太了解二者的实际用途。

其实,Retrieval-Augmented Generation (RAG) 和微调 (Fine-Tuning) 是两种最常用的LLM的“大脑升级”技术,虽然它们都能提升模型的性能,但工作原理和适用场景却大相径庭。今天,我就来深入聊聊这两种技术,弄清楚在不同情况下,到底该选 RAG 还是微调。


RAG 和微调分别做了什么


想象一下,LLM 是一个学识渊博的大脑。

微调(Fine-Tuning)就像是给这个大脑进行一次“专科培训”。我们用一个较小的、聚焦于特定领域(比如医疗、法律)或特定任务(比如情感分析、摘要生成)的数据集,对预训练好的 LLM 进行进一步训练。通过调整模型的内部参数,让它更精通某个领域的知识或更擅长完成某个任务。就像一个通才经过医学专业的深造,变得擅长诊断疾病。

 RAG(检索增强生成)则更像给这个大脑配备了一个“超级图书馆”和一位“速查助手”。当有人提问时,“助手”会迅速从外部的动态知识库(比如企业数据库、最新的新闻文章)中检索相关信息,然后将这些信息和用户的问题一起提供给 LLM 大脑,让大脑结合这些最新、最具体的信息来生成回答。这种方式不需要改变大脑本身的结构(无需重新训练模型),而是通过提供外部信息来增强其回答的准确性和时效性。就像一个博览群书的人,在回答特定问题时能迅速查阅最新资料来佐证和完善。


主要差异


RAG 和微调最核心的区别在于它们处理和利用知识的方式。

RAG 依赖外部动态数据源,这些数据可以实时更新,让模型始终获取最新信息,而且更新知识库无需重新训练模型。

微调则依赖固定的数据集,如果数据或任务发生变化,就需要重新进行训练,成本较高。

RAG 能够在利用外部特定知识的同时,保持模型原有的通用能力。

微调则可能因为在特定数据集上的深度训练而牺牲一部分通用性,出现所谓的“灾难性遗忘”。

而在资源需求上,RAG 主要需要在数据检索基础设施(如向量数据库)上投入,推理阶段的计算需求相对较低。

微调则在训练阶段需要消耗大量计算资源,但在推理阶段模型自身就包含所需知识。

因此,可以说RAG 更适合需要实时信息且信息源动态变化的场景,比如客户服务聊天机器人需要了解最新的产品信息,或新闻摘要应用需要抓取最新报道。

微调则更适合任务高度专精、需要对某个领域有深厚理解的场景,比如医疗诊断需要模型掌握大量医学术语和病理知识,或法律文档分析需要熟悉复杂的法律条文。


结论


RAG 和微调都是提升 LLM 能力的强大工具,但它们各有侧重,并非非此即彼。RAG 以其灵活性和实时性,擅长处理动态信息;微调则通过深度训练,让模型在特定领域达到卓越的专精度。理解两者的核心差异、优缺点及适用场景,并结合实际的项目需求、数据特点和资源状况,才能做出最明智的技术选择,甚至考虑将两者巧妙结合,打造出更强大、更符合需求的 AI 应用。

53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询