微信扫码
添加专属顾问
我要投稿
知识图谱按照逻辑结构可以划分为数据层和模式层两部分。数据层包含的是大量由基本事实组成的信息,这些事实通常以三元组的形式存在,例如"实体-关系-实体"或"实体-属性-属性值",这样的数据结构一般以图数据库的形式存储。模式层则进一步抽象,它代表着数据组织的模式,是在数据层之上对知识进行提炼和概括的层面,通常通过本体库来管理和组织这些数据。
1.信息提取
信息抽取是一个多维度的过程,它根据任务需求的不同而有所区别。例如,在情感和舆论分析任务中,重点在于抽取事件和情感信息,而在知识图谱的应用中,则更侧重于实体、关系和属性等信息的抽取。在知识图谱中,实体的属性,比如城市的人口数量和地理位置,是其固有属性的一部分。无论是实体、关系的抽取还是属性的抽取,都可以采用监督、半监督或无监督的方法进行。信息抽取主要处理的是半结构化和非结构化数据,通过这一过程,原本非结构化的数据可以转化为结构化数据,为知识图谱系统所用。
2.知识融合
整体-部分关系,通过"Part-of"来表达。
概念间的继承关系,通过"Kind-of"来表达。
概念和实例之间的关系,通过"Instance-of"来表达。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-14
中国没有Palantir,恰恰是因为我们‘太聪明’
2025-12-12
关于动态本体的一些新思考及多模态知识图谱构建思路VisKnow
2025-12-11
案例:Palantir AIP如何教Agent学会记忆
2025-12-10
为AI奠定知识根基:为什么每个项目都需要知识图谱
2025-12-09
在“最优复杂性”中寻找极简之道——解读Palantir 本体论的实战哲学
2025-12-08
本体论:从数据中发现意义
2025-12-05
构建本体驱动的下一代智能数字生态系统
2025-12-04
基于 Ontology 构建企业 Agent 根基:从理论到实践的技术路径 V2.0
2025-09-17
2025-10-30
2025-10-19
2025-09-20
2025-11-05
2025-10-21
2025-12-01
2025-10-13
2025-11-24
2025-09-29
2025-12-01
2025-07-29
2025-07-14
2025-06-14
2025-05-23
2025-05-23
2025-05-22
2025-05-20