微信扫码
添加专属顾问
我要投稿
在大模型时代,知识图谱作为一种结构化的知识表示方式,扮演着至关重要的角色。随着大模型在自然语言处理、图像识别和智能决策等领域的广泛应用,知识图谱与大模型的结合成为推动人工智能进步的重要方向。这种结合不仅提升了大模型的语义理解和推理能力,还增强了其在多模态数据处理、模型解释和持续学习等方面的表现。接下来,我们将探讨几种最为关键的结合点,展示知识图谱如何与大模型协同工作,推动前沿应用的发展。
知识图谱嵌入:将知识图谱中的实体和关系嵌入到向量空间中,然后将这些向量作为大模型的额外输入或用于对模型输出进行增强。这种方法使得大模型能够更好地理解文本中的实体及其关系。
2.推理与决策支持:
结合点:利用知识图谱中预定义的逻辑和关系,增强大模型的推理能力,使其在复杂问题上能够进行更有逻辑的推理和决策。
应用:医疗诊断、金融风险分析。
5.持续学习与知识更新:
结合点:通过知识图谱动态更新模型的知识库,使得大模型能够持续学习和适应最新的信息和知识。
应用:搜索引擎、智能助手。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
如何为客户数据构建语义视图?
2025-06-13
构建下一代AI:深入探讨知识图谱 KG 与大模型 LLM 的集成方法
2025-06-02
知识图谱与LLM接口优化:突破复杂推理的性能瓶颈
2025-06-02
大模型时代知识图谱驱动的企业知识大脑
2025-05-28
知识图谱激活 DeepSeek 智能体,图模互补重构企业专业知识管理
2025-05-27
向量、向量数据库是什么?用选电脑和写代码的方式给你讲明白!
2025-05-26
知识图谱焕发生机,激发大模型LLM深层次推理 —— 昨天,今天和明天
2025-05-25
AI 在落地之前,要先投资几个数据库
2025-03-18
2025-03-19
2025-03-26
2025-04-07
2025-05-06
2025-04-21
2025-03-29
2025-05-23
2025-04-09
2025-04-07
2025-06-14
2025-05-23
2025-05-23
2025-05-22
2025-05-20
2025-04-20
2025-04-15
2025-04-09