微信扫码
添加专属顾问
我要投稿
告别繁琐的prompt调试,Promptify让你用几行代码轻松驾驭大语言模型! 核心内容: 1. Promptify三大核心组件:Prompter、LLM接口和Pipeline 2. 安装方法与API密钥配置指南 3. 医学实体识别等实际应用案例演示
Promptify 是一个Python库这款 Python 库通过 prompter、LLM 集成与 pipeline,把原本要反复调试 prompt 的过程简化成几行代码。
Github地址:https://github.com/promptslab/Promptify
本文将通过简单示例,带你了解 Promptify 为什么能成为 NLP 工具链中的“呼吸一口新鲜空气”。
欢迎大家关注公众号:AI大模型观察站,谢谢啦~~~~~
假设你有一段文本,比如一份小说片段,想提取关键词、进行分类、生成问题。
通常你得构造复杂的 prompt,反复尝试才能让 LLM 给出合适结果。
Promptify 彻底改变了这一流程。
它是一个 Python 库,核心由三部分组成:
•✅ Prompter:用于构建 prompt(支持内置或自定义模板)•✅ LLM 接口:支持 OpenAI、PaLM、Hugging Face 等多种模型•✅ Pipeline:自动将文本输入 → prompt → LLM → 输出打通
无论是关键词提取、还是生成读书问题,Promptify 都能轻松搞定。
使用 pip 安装:
pip3 install promptify
或安装最新 GitHub 版本:
pip3 install git+https://github.com/promptslab/Promptify.git
使用前需要准备 LLM 的 API Key(如 OpenAI、DeepSeek等)。
from promptify importPrompter,OpenAI,Pipeline
sentence ="""The patient is a 93-year-old female with a medical history of chronic right hip pain, osteoporosis, hypertension, depression, and chronic atrial fibrillation admitted for evaluation and management of severe nausea and vomiting and urinary tract infection"""
model =OpenAI("your_api_key_here")
prompter =Prompter('ner.jinja')
pipe =Pipeline(prompter, model)
result = pipe.fit(sentence, domain="medical", labels=None)
print(result)
输出结果如下:
[{"E":"93-year-old","T":"Age"},{"E":"chronic right hip pain","T":"Medical Condition"},{"E":"osteoporosis","T":"Medical Condition"},{"E":"hypertension","T":"Medical Condition"},{"E":"depression","T":"Medical Condition"},{"E":"chronic atrial fibrillation","T":"Medical Condition"},{"E":"severe nausea and vomiting","T":"Symptom"},{"E":"urinary tract infection","T":"Medical Condition"},{"Branch":"Internal Medicine","Group":"Geriatrics"}]
👉 整理干净的结构化输出,准确分类,还能归属到临床科室。节省大量人工标注时间。
from promptify importOpenAI,Prompter
sentence ="""The patient is a 93-year-old female with a medical history of chronic right hip pain, osteoporosis, hypertension, depression, and chronic atrial fibrillation admitted for evaluation and management of severe nausea and vomiting and urinary tract infection"""
model =OpenAI("your_api_key_here")
nlp_prompter =Prompter(model)
result = nlp_prompter.fit('multilabel_classification.jinja', domain='medical', text_input=sentence)
print(result)
输出如下:
[{'1':'Medicine','2':'Osteoporosis','3':'Hypertension','4':'Depression','5':'Atrial fibrillation','6':'Nausea and vomiting','7':'Urinary tract infection','branch':'Health','group':'Clinical medicine','main class':'Health'}]
👉 非常适合做医疗知识图谱、自动病例标签系统等。
from promptify importOpenAI,Prompter
sentence ="""The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well."""
model =OpenAI("your_api_key_here")
nlp_prompter =Prompter(model)
result = nlp_prompter.fit('qa_gen.jinja', domain='story_writing', text_input=sentence)
print(result)
输出结果:
[{'A':'Alice found herself falling down a very deep well.','Q':'What happened when Alice went down the rabbit-hole?'},{'A':'Very deep.','Q':'How deep was the well?'},{'A':'No, she did not have a moment to think.','Q':'Did Alice have time to think about stopping herself?'},{'A':'It went straight on like a tunnel.','Q':'What direction did the rabbit-hole go?'},{'A':'No, she did not expect it.','Q':'Did Alice expect to fall down a well?'}]
👉 这些问答题可以直接拿去做英文阅读理解测验,省心又省力!
作为一个在资深程序员(已经写了十多年的代码),我对工具的要求是“节省脑细胞 + 效果可控”。
Promptify 做到了这几点:
✅ 节省脑力:告别 prompt 拼命调试
✅ 模板灵活:支持自定义任务模版
✅ 多模型兼容:OpenAI、Hugging Face 都能跑
✅ 任务多样:从医学到创意写作都能驾驭
✅ 快速上手:几行代码就能跑结果
Promptify 是所有在 NLP 路上摸索的开发者的贴心助手。无论你做的是实体提取、文本分类、还是生成问题,它都能一站式搞定。
推荐给:
•数据科学家•医疗 NLP 工程师•教育/创作者•AI 初学者
小伙伴们,可以尝试下,按照你工作、生活中所使用的提示词,把这些都管理起来,作为自己的资源。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-01
2025-04-02
2025-04-08
2025-04-08
2025-05-08
2025-05-08
2025-05-08
2025-04-11
2025-05-07
2025-04-14
2025-06-23
2025-06-14
2025-06-04
2025-06-02
2025-05-17
2025-05-16
2025-05-09
2025-04-29