微信扫码
添加专属顾问
我要投稿
使用 Raspberry Pi AI 套件进行非结构化数据处理——Hailo边缘AI
非结构化数据处理、Raspberry Pi 5、Raspberry Pi AI套件、Milvus、Zilliz、数据、图像、计算机视觉、深度学习、Python
在边缘实时相机流中检测、显示和存储检测到的图像
!pip install boto3
Requirement already satisfied: boto3 in ./milvusvenv/lib/python3.12/site-packages (1.34.129) Requirement already satisfied: botocore<1.35.0,>=1.34.129 in ./milvusvenv/lib/python3.12/site-packages (from boto3) (1.34.129) Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in ./milvusvenv/lib/python3.12/site-packages (from boto3) (1.0.1) Requirement already satisfied: s3transfer<0.11.0,>=0.10.0 in ./milvusvenv/lib/python3.12/site-packages (from boto3) (0.10.1) Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in ./milvusvenv/lib/python3.12/site-packages (from botocore<1.35.0,>=1.34.129->boto3) (2.9.0.post0) Requirement already satisfied: urllib3!=2.2.0,<3,>=1.25.4 in ./milvusvenv/lib/python3.12/site-packages (from botocore<1.35.0,>=1.34.129->boto3) (2.2.1) Requirement already satisfied: six>=1.5 in ./milvusvenv/lib/python3.12/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.35.0,>=1.34.129->boto3) (1.16.0)
from __future__ import print_functionimport requestsimport sysimport ioimport jsonimport shutilimport sysimport datetimeimport subprocessimport sysimport osimport mathimport base64from time import gmtime, strftimeimport random, stringimport timeimport psutilimport base64import uuidimport socketimport osfrom pymilvus import connectionsfrom pymilvus import utilityfrom pymilvus import FieldSchema, CollectionSchema, DataType, Collectionimport torchfrom torchvision import transformsfrom PIL import Imageimport timmfrom sklearn.preprocessing import normalizefrom timm.data import resolve_data_configfrom timm.data.transforms_factory import create_transformfrom pymilvus import MilvusClientimport osfrom IPython.display import display
from __future__ import print_functionimport requestsimport sysimport ioimport jsonimport shutilimport sysimport datetimeimport subprocessimport sysimport osimport mathimport base64from time import gmtime, strftimeimport random, stringimport timeimport psutilimport base64import uuidimport socketimport osfrom pymilvus import connectionsfrom pymilvus import utilityfrom pymilvus import FieldSchema, CollectionSchema, DataType, Collectionimport torchfrom torchvision import transformsfrom PIL import Imageimport timmfrom sklearn.preprocessing import normalizefrom timm.data import resolve_data_configfrom timm.data.transforms_factory import create_transformfrom pymilvus import MilvusClientimport osfrom IPython.display import display
# -----------------------------------------------------------------------------class FeatureExtractor:def __init__(self, modelname):# Load the pre-trained modelself.model = timm.create_model(modelname, pretrained=True, num_classes=0, global_pool="avg")self.model.eval()# Get the input size required by the modelself.input_size = self.model.default_cfg["input_size"]config = resolve_data_config({}, model=modelname)# Get the preprocessing function provided by TIMM for the modelself.preprocess = create_transform(**config)def __call__(self, imagepath):# Preprocess the input imageinput_image = Image.open(imagepath).convert("RGB")# Convert to RGB if neededinput_image = self.preprocess(input_image)# Convert the image to a PyTorch tensor and add a batch dimensioninput_tensor = input_image.unsqueeze(0)# Perform inferencewith torch.no_grad():output = self.model(input_tensor)# Extract the feature vectorfeature_vector = output.squeeze().numpy()return normalize(feature_vector.reshape(1, -1), norm="l2").flatten()
extractor = FeatureExtractor("resnet34")# -----------------------------------------------------------------------------# Constants - should be environment variables# -----------------------------------------------------------------------------DIMENSION = 512MILVUS_URL = "http://192.168.1.163:19530"COLLECTION_NAME = "pidetections"BUCKET_NAME = "images"DOWNLOAD_DIR = "/Users/timothyspann/Downloads/code/images/"AWS_RESOURCE = "s3"S3_ENDPOINT_URL = "http://192.168.1.163:9000"AWS_ACCESS_KEY = "minioadmin"AWS_SECRET_ACCESS_KEY = "minioadmin"S3_SIGNATURE_VERSION = "s3v4"AWS_REGION_NAME = "us-east-1"S3_ERROR_MESSAGE = "Download failed"# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------# Connect to Milvus# Local Docker Servermilvus_client = MilvusClient( uri=MILVUS_URL)# -----------------------------------------------------------------------------
import osimport boto3from botocore.client import Config# -----------------------------------------------------------------------------# Access Images on S3 Compatible Store - AWS S3 or Minio or ...# -----------------------------------------------------------------------------s3 = boto3.resource(AWS_RESOURCE,endpoint_url=S3_ENDPOINT_URL,aws_access_key_id=AWS_ACCESS_KEY,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,config=Config(signature_version=S3_SIGNATURE_VERSION),region_name=AWS_REGION_NAME)bucket = s3.Bucket(BUCKET_NAME)# -----------------------------------------------------------------------------# Get last modified image# -----------------------------------------------------------------------------files = bucket.objects.filter()files = [obj.key for obj in sorted(files, key=lambda x: x.last_modified,reverse=True)]for imagename in files:query_image = imagenamebreaksearch_image_name = DOWNLOAD_DIR + query_imagetry:s3.Bucket(BUCKET_NAME).download_file(query_image, search_image_name)except botocore.exceptions.ClientError as e:print(S3_ERROR_MESSAGE)# -----------------------------------------------------------------------------# Search Milvus for that vector and filter by a label# -----------------------------------------------------------------------------results = milvus_client.search(COLLECTION_NAME,data=[extractor(search_image_name)],filter='label in ["keyboard"]',output_fields=["label", "confidence", "id", "s3path", "filename"],search_params={"metric_type": "COSINE"},limit=5)# -----------------------------------------------------------------------------# Iterate through last five results and display metadata and image# -----------------------------------------------------------------------------for result in results:for hit in result[:5]:label = hit["entity"]["label"]confidence = hit["entity"]["confidence"]filename = hit["entity"]["filename"]s3path = hit["entity"]["s3path"]try:s3.Bucket(BUCKET_NAME).download_file(filename, DOWNLOAD_DIR + filename)except botocore.exceptions.ClientError as e:print(S3_ERROR_MESSAGE)print(f"Detection: {label} {confidence:.2f} for {filename} from {s3path}" )img = Image.open(DOWNLOAD_DIR + filename)display(img)# Enhancement:we could also post this to slack or discord
tspann@five:/opt/demo $hailortcli fw-control identifyExecuting on device: 0000:01:00.0Identifying boardControl Protocol Version: 2Firmware Version: 4.17.0 (release,app,extended context switch buffer)Logger Version: 0Board Name: Hailo-8Device Architecture: HAILO8LSerial Number: HLDDLBB241601635Part Number: HM21LB1C2LAEProduct Name: HAILO-8L AI ACC M.2 B+M KEY MODULE EXT TMPtspann@five:/opt/demo $dmesg | grep -i hailo[3.155152] hailo: Init module. driver version 4.17.0[3.155295] hailo 0000:01:00.0: Probing on: 1e60:2864...[3.155301] hailo 0000:01:00.0: Probing: Allocate memory for device extension, 11600[3.155321] hailo 0000:01:00.0: enabling device (0000 -> 0002)[3.155327] hailo 0000:01:00.0: Probing: Device enabled[3.155350] hailo 0000:01:00.0: Probing: mapped bar 0 - 0000000095e362ea 16384[3.155357] hailo 0000:01:00.0: Probing: mapped bar 2 - 000000005e2b2b7e 4096[3.155362] hailo 0000:01:00.0: Probing: mapped bar 4 - 000000008db50d03 16384[3.155365] hailo 0000:01:00.0: Probing: Force setting max_desc_page_size to 4096 (recommended value is 16384)[3.155375] hailo 0000:01:00.0: Probing: Enabled 64 bit dma[3.155378] hailo 0000:01:00.0: Probing: Using userspace allocated vdma buffers[3.155382] hailo 0000:01:00.0: Disabling ASPM L0s[3.155385] hailo 0000:01:00.0: Successfully disabled ASPM L0s[3.417111] hailo 0000:01:00.0: Firmware was loaded successfully[3.427885] hailo 0000:01:00.0: Probing: Added board 1e60-2864, /dev/hailo0
gst-inspect-1.0 hailotoolslspci | grep Hailouname -av4l2-ctl --list-formats-ext -d /dev/video0ls /dev/video*ffplay -f v4l2 /dev/video0
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-12
手机AI智能体助手的四大风险与五层防护
2025-12-12
趋境科技×智谱AI联手,把千亿大模型装进桌面小盒子:「灵启AI小盒子」开启个人超级AI Lab时代
2025-12-11
2000元搞定企业级AI算力!DellR730XD+双P100+ESXi8.0+AlmaLinux9直通部署终极指南
2025-12-10
出门问问发布全球首款4G AI录音耳机TicNote Pods,迈向“独立AI终端”
2025-12-09
豆包AI手机遭全网抵制,深度解析!
2025-12-08
我在字节的最后一个项目:聊聊豆包AI手机助手
2025-12-06
智能体A2A落地华为新旗舰,鸿蒙开发者新机遇来了
2025-12-05
豆包手机,从爆火到翻车只用了3天
2025-09-19
2025-12-05
2025-11-09
2025-10-13
2025-10-24
2025-10-27
2025-12-01
2025-09-15
2025-11-17
2025-09-20