微信扫码
添加专属顾问
我要投稿
LLMOps(Large Language Model Operations),是一套包含开发、部署、维护和优化大型语言模型(例如GPT系列)实践和流程的平台。其目标是确保这些强大的AI模型能够被高效、可扩展且安全地应用于构建和运行实际应用程序。LLMOps涵盖了模型训练、部署、监控、更新、安全性和合规性等多个方面。
数据准备:手动收集和预处理数据,可能包含繁琐的数据清洗和标注工作,这需要编写大量代码。
Prompt工程:开发者通常只能通过API调用或在Playground环境中编写和测试Prompt,缺乏即时反馈和可视化调试工具。
嵌入和上下文管理:手动处理长文本的嵌入和存储,难以进行优化和扩展,需要对模型嵌入和向量数据库等技术有深入了解。
应用监控与维护:手动收集和分析性能数据,可能无法及时发现和解决问题,有时甚至缺少必要的日志记录。
模型微调:自行准备微调数据并进行训练,这可能导致效率不高,且需要编写更多的代码。
系统和运营:需要技术人员参与或投入成本来开发管理后台,这增加了开发和维护的成本,并且缺乏对多人协作的支持以及对非技术人员的友好性。
基于 LLMOps 开发应用的过程
平台名称 | 所属公司 | 平台链接 |
Dify-LLMOps | Dify | https://docs.dify.ai/v/zh-hans/learn-more/extended-reading/what-is-llmops |
百度开发者中心 - LLMOps | 百度 | https://developer.baidu.com/article/details/3264244 |
Red Hat - LLMOps 和 MLOps | Red Hat | https://www.redhat.com/zh/topics/ai/llmops |
Sophon LLMOps | 星环科技 | https://www.transwarp.cn/subproduct/sophon-llmops |
Unite.AI - LLMOps | Unite.AI |
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-30
WAIC-Day3: 谈谈Agent场景及Agent OS基础设施
2025-07-30
微软进军 AI 浏览器,维持巨头的平庸
2025-07-30
Higress ,助力企业构建私有 AI 网关和 MCP 市场
2025-07-30
刚刚,OpenAI给大学生做了个新外挂!ChatGPT一键变老师,免费可用
2025-07-30
突发!字节跳动发布同声传译大模型Seed LiveInterpret2.0,是首个延迟与准确率接近人类水平的中英语音同传系统!
2025-07-30
OpenAI深夜发布ChatGPT Study:免费AI家教,彻底颠覆传统教育
2025-07-29
AI+合同审查落地分享(下-1- 合同智能审查)
2025-07-29
AI 应用开发,还需要意图识别吗?
2025-05-29
2025-05-23
2025-06-01
2025-05-07
2025-05-07
2025-05-07
2025-06-07
2025-06-21
2025-06-12
2025-05-20
2025-07-29
2025-07-29
2025-07-28
2025-07-27
2025-07-27
2025-07-25
2025-07-24
2025-07-24