微信扫码
添加专属顾问
我要投稿
重排模型显著提升了信息检索(IR)系统的质量。传统重排方法依赖于手工定义的特征和特定的学习排序损失函数。随着BERT等模型的出现,交叉编码器(Cross-Encoder )成为了标准的重排工具。近年,大型语言模型(LLMs)也被证明是有效的零样本(zero-shot)重排器。
因此,做出了一项深入研究:在重新排列有效的SPLADE检索器的背景下,比较了LLMs重排器(LLMs As ReRankers)与交叉编码器(Cross-Encoders)。在TREC深度学习数据集和诸如BEIR和LoTTE等跨领域数据集上进行了大规模评估,得出如下结论:
各种SPLADE模型与各种重排器的领域内评估(nDCG@10)
LLMs As Rerankers的Prompt模版
https://arxiv.org/pdf/2403.10407A Thorough Comparison of Cross-Encoders and LLMs for Reranking SPLADE
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-30
WAIC-Day3: 谈谈Agent场景及Agent OS基础设施
2025-07-30
微软进军 AI 浏览器,维持巨头的平庸
2025-07-30
Higress ,助力企业构建私有 AI 网关和 MCP 市场
2025-07-30
刚刚,OpenAI给大学生做了个新外挂!ChatGPT一键变老师,免费可用
2025-07-30
突发!字节跳动发布同声传译大模型Seed LiveInterpret2.0,是首个延迟与准确率接近人类水平的中英语音同传系统!
2025-07-30
OpenAI深夜发布ChatGPT Study:免费AI家教,彻底颠覆传统教育
2025-07-29
AI+合同审查落地分享(下-1- 合同智能审查)
2025-07-29
AI 应用开发,还需要意图识别吗?
2025-05-29
2025-05-23
2025-06-01
2025-05-07
2025-05-07
2025-05-07
2025-06-07
2025-06-21
2025-06-12
2025-05-20
2025-07-29
2025-07-29
2025-07-28
2025-07-27
2025-07-27
2025-07-25
2025-07-24
2025-07-24