微信扫码
添加专属顾问
我要投稿
重排模型显著提升了信息检索(IR)系统的质量。传统重排方法依赖于手工定义的特征和特定的学习排序损失函数。随着BERT等模型的出现,交叉编码器(Cross-Encoder )成为了标准的重排工具。近年,大型语言模型(LLMs)也被证明是有效的零样本(zero-shot)重排器。
因此,做出了一项深入研究:在重新排列有效的SPLADE检索器的背景下,比较了LLMs重排器(LLMs As ReRankers)与交叉编码器(Cross-Encoders)。在TREC深度学习数据集和诸如BEIR和LoTTE等跨领域数据集上进行了大规模评估,得出如下结论:
各种SPLADE模型与各种重排器的领域内评估(nDCG@10)
LLMs As Rerankers的Prompt模版
https://arxiv.org/pdf/2403.10407A Thorough Comparison of Cross-Encoders and LLMs for Reranking SPLADE
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-13
这可能是Human-in-the-Loop最具象化的演绎 | 长程推理Agent设计实践
2025-09-13
ai问答助手类产品策略与指标
2025-09-13
蚂蚁数科宣布:支持企业客户按大模型应用效果付费
2025-09-13
阿里Qoder IDE进行AI辅助编程的简单验证
2025-09-13
Docling将pdf转markdown以及与AI生态集成
2025-09-13
Claude Code 为何如此强大?Anthropic 万字长文揭秘 AI Agent 工具开发五大“心法”
2025-09-12
从“代码补全”到“知识对齐”:Qoder Repo Wiki 迎来重磅升级
2025-09-12
基于智能体的自适应资损防控体系 - 淘工厂实践(二)
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-07-04
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08
2025-09-07