微信扫码
添加专属顾问
我要投稿
ChatGPT 整体的训练过程复杂,虽然基于DeepSpeed 可以通过单机多卡、多机多卡、流水线并行等操作来训练和微调大语言模型,但是没有端到端的基于人类反馈机制的强化学习的规模化系统,仍然会造成训练类ChatGPT 系统非常困难。
DeepSpeed-Chat是微软于2023 年4月发布的基于DeepSpeed 用于训练类ChatGPT 模型的开发工具。 基于DeepSpeed-Chat 训练类ChatGPT 对话模型的步骤框架如图所示,包含以下三个步骤。 (1)有监督微调(SFT) (2)奖励模型微调 (3)RLHF 训练
DeepSpeed-Chat 具有以下三大核心功能。
DeepSpeed-Chat 代码仓库位于微软官方GitHub 仓库DeepSpeedExamples/applications/DeepSpeed-Chat 路径下。在进行实际应用前,需要先对官方代码有一个全局的了解。DeepSpeed-Chat 代码的结构如下所示:
当需要完整微调一个模型时(包含所有步骤),可以直接运行train.py 程序。训练中主要调整如下参数。 --step 训练步骤参数,表示运行哪个步骤,可选参数为1、2、3。本节介绍的内容只使用步骤一,有监督微调。 --deployment-type 表示分布式训练模型的参数,分别为单卡single_gpu、单机多卡single_node 和多机多卡multi_node。 --actor-model 表示要训练的模型,默认参数为训练OPT 的"1.3b"、"6.7b"、"13b"、"66b" 等各个参数量的模型。 --reward-model 表示要训练的奖励模型,默认参数为OPT 的"350m" 参数量的模型。 --actor-zero-stage 表示有监督微调的DeepSpeed 分布式训练配置。 --reward-zero-stage 表示训练奖励的DeepSpeed 分布式训练配置。 --output-dir 表示训练过程和结果的输出路径。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-18
2026 开年AI对谈:the year of R | 对谈真格基金戴雨森
2025-12-18
再论Skill:Agent 落地第一性原理
2025-12-18
Gemini 3 Flash闪电来袭:智力竟反超Pro!速度快3倍,全球免费
2025-12-18
Gemini 3 Flash 可能是 Google 最狠的一步棋
2025-12-18
Cursor 又“危险”了?谷歌深夜祭出 Gemini 3 Flash!编码能力反超 Gemini 3 Pro,价格还更低
2025-12-17
腾讯大模型「变阵」:成立 AI Infra 部,姚顺雨出任首席 AI 科学家
2025-12-17
OpenAI发布了其实时API的新模型
2025-12-17
有人逆向拆解了ChatGPT 的记忆功能
2025-09-19
2025-10-26
2025-10-02
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13
2025-10-02
2025-12-16
2025-12-15
2025-12-14
2025-12-12
2025-12-12
2025-12-11
2025-12-09
2025-12-08