微信扫码
添加专属顾问
我要投稿
DB-GPT的目的是构建大模型领域的基础设施,通过开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。
DB-GPT系统处理查询的架构,展示了以下组件和流程:
提交一个查询。
检索器组件选择相关信息。
重排器细化选择以确保最佳匹配。
为文本转SQL任务细化调整的语言模型(LLM)处理精炼信息。
系统确保身份安全。
生成并返回一个回复。
架构下方还展示了一个多源知识库,表明系统使用多个来源,如数据库、网页和PDF文件。还有如AIOps代理、SQL代理和商业分析代理,可以与不同类型的数据和服务接口。
以下是DB-GPT的关键特性:
一、私域问答&数据处理&RAG(Retrieval-Augmented Generation)
支持内置、多文件格式上传、插件自抓取等方式自定义构建知识库,对海量结构化,非结构化数据做统一向量存储与检索。
二、多数据源&GBI(Generative Business Intelligence)
支持自然语言与Excel、数据库、数仓等多种数据源交互,并支持分析报告。
三、多模型管理
海量模型支持,包括开源、API代理等几十种大语言模型。如LLaMA/LLaMA2、Baichuan、ChatGLM、文心、通义、智谱、星火等。
四、自动化微调
围绕大语言模型、Text2SQL数据集、LoRA/QLoRA/Pturning等微调方法构建的自动化微调轻量框架, 让TextSQL微调像流水线一样方便。
五、Data-Driven Multi-Agents&Plugins
支持自定义插件执行任务,原生支持Auto-GPT插件模型,Agents协议采用Agent Protocol标准。
六、隐私安全
通过私有化大模型、代理脱敏等多种技术保障数据的隐私安全。
论文:https://arxiv.org/pdf/2312.17449.pdf
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-15
治理之智 | 从零和博弈走向长期合作:人工智能版权问题分析与思考
2025-12-15
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
2025-12-15
200k Tokens 的上下文真的够用吗?
2025-12-15
专家知识 x 技术放大:我在B端智能体落地一线的万字真实复盘
2025-12-15
字节AI神操作:AI生成接口自动化测试用例,效率拉满
2025-12-15
解析 Goose:为什么它会进入 AAIF,以及这对 Agentic Runtime 意味着什么
2025-12-15
Palantir的“本体论”:数字世界的底层革命
2025-12-15
Claude Skills|将 Agent 变为领域专家
2025-09-19
2025-10-26
2025-10-02
2025-09-17
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13