微信扫码
添加专属顾问
我要投稿
最近发现华为NPU的生态里多了一个成员——MindIE,部分解决了大模型推理的问题,下面简要介绍下Mind华为昇腾NPU卡的生态。
CANN
对应 CUDA
MindSpore
对应 PyTorch
MindFormer
对应 Transformers
MindIE
对应 vLLM
首先,在英伟达的生态中,有从底层到上层分别有CUDA、PyTorch、transformers、vLLM等常见库。对应的,在华为的生态中,分别有CANN、MindSpore、MindFormer、MindIE。具体对应关系见下图:
关于MindSpore、MindIE的详细介绍,分别见下面的图与链接:
MindSpore——https://www.mindspore.cn/
MindIE——https://www.hiascend.com/software/mindie
在华鲲振宇AI最优解/ Ascend-FAQ的gitee[1]页面上,介绍了MindIE目前支持的模型,包含了llama3-8B、llama2-7B、Qwen1.5-14B-Chat、Qwen1.5-72B-Chat、chatglm3-6B等模型。
目前看支持的大模型很少,而且页面上没有写的大概率不支持(比如Qwen1.5-32B-Chat以及Qwen2系列实测均不支持)。
虽然支持的模型不多,但是,得益于910B系列卡的强劲算力,配合MindIE框架做了下并发推理测试,具体结果如下:
可以看到4卡910B4,跑Qwen1.5-14B-Chat模型,在40并发的情况下,首token平均延迟为66毫秒,每秒token生成数在1200左右,单个请求每秒生成token数约为30个,基本可以满足生产环境的需求
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
浅尝一下微软的AutoGen框架
2025-06-14
基于大模型的智能运营 | 智能体式编排,业务流程管理的新阶段
2025-06-14
从Manus爆火看Agent AI的技术演进与市场变革——AI Agent全景研报
2025-06-14
张鹏对谈李广密:Agent 的真问题与真机会,究竟藏在哪里?
2025-06-14
为什么说Maus是未来任务型AI系统的代表?
2025-06-14
AI agent如何进化为天网
2025-06-14
Ollama 和 vLLM 私有化部署大模型方案分析
2025-06-14
Manus 启发下的 Agent产品设计:如何构建能思考、多步操作的 AI
2025-05-29
2025-03-20
2025-03-21
2025-04-11
2025-03-20
2025-03-19
2025-03-20
2025-03-19
2025-03-19
2025-03-19
2025-06-14
2025-06-14
2025-06-13
2025-06-13
2025-06-13
2025-06-13
2025-06-12
2025-06-12