微信扫码
添加专属顾问
我要投稿
最近发现华为NPU的生态里多了一个成员——MindIE,部分解决了大模型推理的问题,下面简要介绍下Mind华为昇腾NPU卡的生态。
CANN 对应 CUDAMindSpore 对应 PyTorchMindFormer 对应 TransformersMindIE 对应 vLLM首先,在英伟达的生态中,有从底层到上层分别有CUDA、PyTorch、transformers、vLLM等常见库。对应的,在华为的生态中,分别有CANN、MindSpore、MindFormer、MindIE。具体对应关系见下图:
关于MindSpore、MindIE的详细介绍,分别见下面的图与链接:
MindSpore——https://www.mindspore.cn/
MindIE——https://www.hiascend.com/software/mindie
在华鲲振宇AI最优解/ Ascend-FAQ的gitee[1]页面上,介绍了MindIE目前支持的模型,包含了llama3-8B、llama2-7B、Qwen1.5-14B-Chat、Qwen1.5-72B-Chat、chatglm3-6B等模型。
目前看支持的大模型很少,而且页面上没有写的大概率不支持(比如Qwen1.5-32B-Chat以及Qwen2系列实测均不支持)。
虽然支持的模型不多,但是,得益于910B系列卡的强劲算力,配合MindIE框架做了下并发推理测试,具体结果如下:
可以看到4卡910B4,跑Qwen1.5-14B-Chat模型,在40并发的情况下,首token平均延迟为66毫秒,每秒token生成数在1200左右,单个请求每秒生成token数约为30个,基本可以满足生产环境的需求
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
2025-10-29
DocReward:让智能体“写得更专业”的文档奖励模型
2025-10-29
沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略
2025-10-29
大模型的Funcation Calling是什么?
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20
2025-10-29
2025-10-29
2025-10-28
2025-10-28
2025-10-27
2025-10-26
2025-10-25
2025-10-23