微信扫码
添加专属顾问
我要投稿
AI Agent(智能体)作为大模型的重要应用模式,能够通过使用外部工具来执行复杂任务,完成多步骤的工作流程。为了能全面评估模型的工具使用能力,司南及合作伙伴团队推出了 T-Eval 评测基准,相关成果论文已被ACL 2024主会录用。
因此,为了更全面地评估大语言模型的工具使用能力,司南及合作伙伴团队推出了 T-Eval (a step-by-step Tool Evaluation benchmark for LLMs) 评测基准,相较于之前整体评估模型的方式,论文中将大模型的工具使用分解为多个子过程,包括:规划、推理、检索、理解、指令跟随和审查。
然后,我们利用 GPT-3.5 生成了初始问题,并通过 GPT-4 进一步完善问题。之后,我们开发了一个多智能体框架,利用所提供的工具解决问题,同时收集解决方案路径和工具响应。最后,我们使用人类专家来挑选高质量样本。
细粒度评测:T-Eval将评测过程分解为多个子任务,分别评估模型在工具使用上的细粒度能力。
多智能体数据生成:使用了由人类专家验证的多智能体数据生成流程,显著减少了外部因素的影响,使评测结果更加稳定、公平。
广泛实验:通过在各种大模型上的广泛实验,验证了T-Eval的有效性和普适性,为当前大语言模型的工具使用能力瓶颈提供了宝贵的见解,并为改进工具使用能力提供了新的视角。T-Eval 现已加入 OpenCompass 评测平台,更多详细内容可参考以下链接!
GitHub:
https://github.com/open-compass/T-Eval
OpenCompass官网:
https://hub.opencompass.org.cn/dataset-detail/T-Eval
联系我们:
opencompass@pjlab.org.cn
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
2025-10-29
DocReward:让智能体“写得更专业”的文档奖励模型
2025-10-29
沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略
2025-10-29
大模型的Funcation Calling是什么?
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20
2025-10-29
2025-10-29
2025-10-28
2025-10-28
2025-10-27
2025-10-26
2025-10-25
2025-10-23