微信扫码
添加专属顾问
 
                        我要投稿
一、大模型与人工神经网络的关系
PLM(预训练模型):预训练语言模型通常使用互联网上的海量文本数据作为训练语料,这些语料库可能包含数十亿甚至数千亿个单词。这些模型通过在大量的未标注文本数据上进行学习,掌握了语言的共性和规律,进而能够应用于各种NLP下游任务。
数据 + 算力:算力作基础,数据为驱动;无监督预训练(Pre-training),有监督微调(Fine-tuning)。
权重w和偏置b:模型参数包括每一层的权重(weight)和偏置项(bias)。这些参数在训练过程中通过反向传播算法进行调整,以最小化损失函数。
二、人工神经网络与贝叶斯网络的关系
有向无环图(DAG):用于表示变量之间的依赖关系。图中的节点代表变量,有向边(或称为弧)则表示变量之间的依赖关系。如果两个节点之间存在有向边,则意味着一个节点的状态会影响另一个节点的状态。
条件概率表(CPT):与DAG中的每个节点相关联,用于描述节点与其父节点之间的概率关系。条件概率表详细列出了在给定父节点状态下,当前节点取各个可能值的概率。
Bayesian Network
有向图模型:一种使用有向图来表示变量之间关系的数学模型。在有向图中,节点代表变量,而有向边则代表变量之间的依赖关系。
Direction Graph
马尔可夫假设:一种简化模型复杂性的假设,它指出一个节点的状态(或取值)仅依赖于其直接前驱节点的状态(或取值),而与更前面的节点状态无关。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-31
OpenAI 公开 Atlas 架构:为 Agent 重新发明浏览器
2025-10-31
Palantir 本体论模式:重塑企业 AI 应用的 “语义根基” 与产业启示
2025-10-31
树莓派这种“玩具级”设备,真能跑大模型吗?
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
 
            2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20