微信扫码
添加专属顾问
我要投稿
他认为,LLM在许多情况下所做的事情只是类似于推理,但并不完全是正确、可靠的推理算法,这比根本没有推理算法更糟糕,因为它会让你错误地认为它有效,并且你可能无法判断它何时无效,而再多的渐进式创新(技巧)也无法解决这个问题。如果没有范式转变,将真正的推理纳入语言模型,这些错误不可避免。
(Alejandro是古巴哈瓦那大学计算机科学教授,也是专注于数据科学和机器学习应用的公司SYALIA, S.R.L的CTO。本文由OneFlow编译发布,转载请联系授权。原文:https://blog.apiad.net/p/no-llms-still-cannot-reason-part/comments)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
2025-10-29
DocReward:让智能体“写得更专业”的文档奖励模型
2025-10-29
沃尔沃RAG实战:企业级知识库,早就该放弃小分块策略
2025-10-29
大模型的Funcation Calling是什么?
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20
2025-10-29
2025-10-29
2025-10-28
2025-10-28
2025-10-27
2025-10-26
2025-10-25
2025-10-23