微信扫码
添加专属顾问
我要投稿
最近发现CVPR、ICCV、Neurips等顶会上有关聚类+Transformer的论文还真不少,而且基本都是效果很好,创新点很值得参考的成果。
比如CVPR2024的S2VNet新型框架,结合了聚类方法和Transformer架构来实现通用的医学图像分割,性能在多个数据集上超越了SOTA,且推理速度提升近15倍,内存使用减少48.2%。
可见聚类+Transformer这个处理序列/文本数据的创新方法确实有很高的研究价值,再加上它本身就有很多优势,不仅能增强特征表示和模型性能,还能优化计算效率,提高模型的可解释性,为图像分割等聚类任务提供新的解决方案。
方法:论文提出了一种名为S2VNet的通用分割框架,通过切片到体积的传播策略,利用聚类方法来统一处理自动和交互式医学图像分割任务,克服了现有解决方案在慢速推理、远程切片联系不足等方面的局限性,显著提高了分割精度和效率。
创新点:
方法:论文提出了一种名为CLUSTERFORMER的通用视觉模型,基于聚类和Transformer范式,通过递归交叉注意力聚类和特征分派的新颖设计,解决图像分类、目标检测和图像分割等异构视觉任务。
创新点:
方法:论文提出了一种简单而有效的令牌减少(TORE)策略,通过结合3D几何结构和2D图像特征来减少Transformer中的冗余令牌。这种方法通过体结构的先验信息逐步恢复网格几何,并进行令牌聚类,以传递更少但更具辨识力的图像特征令牌。
创新点:
方法:论文介绍了一种名为PaCa-ViT的方法,它结合了聚类和Transformer技术来提高视觉任务中的效率和可解释性,通过学习Patch-to-Cluster Attention来减少传统patch-to-patch注意力机制中的二次复杂度问题,并利用聚类来捕捉图像中更有意义的视觉token。
创新点:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-31
进阶版|企业级 AI Agent 的构建实践
2025-07-31
餐饮业卷生卷死的当下,麦当劳如何用AI突围
2025-07-31
全网疯传GPT-5泄露!首次统一GPT和o系列,编程实测demo抢先曝光,下周发布?
2025-07-31
ODPS重磅升级!全面支撑AI应用爆发
2025-07-31
四步搞定Cursor地区限制
2025-07-31
当AI成为团队“隐形搭档”:Anthropic内部如何用AI重构工作流?
2025-07-31
解锁日志分析新姿势:n8n 工作流 + ES 日志 + AI,数据洞察一键 get
2025-07-31
微软花重金做的Copilot,居然被WPS一个按钮给秒了?
2025-05-29
2025-05-23
2025-06-01
2025-05-07
2025-05-07
2025-05-07
2025-06-07
2025-06-21
2025-06-12
2025-05-20
2025-07-31
2025-07-31
2025-07-31
2025-07-30
2025-07-30
2025-07-30
2025-07-30
2025-07-29