微信扫码
添加专属顾问
我要投稿
你是否也曾好奇,那些能自主执行任务、调用工具的 AI “agent” 是如何运作的? 2024 年,我们见证了 AI 技术从简单的聊天机器人向更复杂的智能体转变。但当我们深入研究这些 agent 时,会发现它们背后的技术栈与我们熟悉的 LLM 技术栈截然不同。
今天,我们就来揭开 AI agent 技术的神秘面纱,为你梳理这个快速发展的领域,让你不再雾里看花。
在 2022 和 2023 年,我们见证了 LLM 框架和 SDK 的爆发,如 LangChain 和 LlamaIndex。与此同时,LLM 的使用也变得更加方便,无论是通过 API 调用还是自行部署(比如 vLLM 和 Ollama)。
然而,到了 2024 年,大家的目光开始转向更高级的 AI “agent”。这个概念虽然早在 AI 领域就存在,但在 ChatGPT 时代,它有了新的内涵:能够自主行动、执行任务,并与外部工具交互的 LLM。
这种转变意味着,我们需要一套全新的技术栈来支撑 agent 的发展。
Agent 不仅仅是一个会聊天的大模型,它们更像是具备一定自主性的智能体。它们需要管理自己的状态(例如,对话历史和记忆)、调用各种工具,并且安全执行。这使得 agent 的技术栈和传统的 LLM 技术栈有很大的不同。
让我们从底层到顶层,逐一剖析 agent 技术栈的关键组成部分:
1. 模型服务:AI 的大脑
2. 存储:记忆的基石
3. 工具与库:能力的扩展
4. Agent 框架:编排智能的指挥中心
5. Agent 托管与服务:未来趋势
Agent 技术栈整体仍然非常年轻,但它正在以惊人的速度发展。未来的 agent 将会更加智能、更加自主,它们将会在各行各业发挥重要的作用。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-04-30
通俗易懂的梳理MCP的工作流程(以高德地图MCP为例)
2025-04-30
一文说明 Function Calling、MCP、A2A 的区别!
2025-04-30
MCP很好,但它不是万灵药|一文读懂 MCP
2025-04-30
旅行规划太难做?5 分钟构建智能Agent,集成地图 MCP Server
2025-04-29
10万元跑满血版DeepSeek,这家公司掀了一体机市场的桌子|甲子光年
2025-04-29
谷歌大神首次揭秘Gemini预训练秘密:52页PPT干货,推理成本成最重要因素
2025-04-29
一文说清:什么是算法备案、大模型备案、大模型登记 2.0
2025-04-29
MCP:AI时代的“万能插座”,大厂竞逐的焦点
2024-08-13
2024-06-13
2024-08-21
2024-09-23
2024-07-31
2024-05-28
2024-08-04
2024-04-26
2024-07-09
2024-09-17
2025-04-29
2025-04-29
2025-04-29
2025-04-28
2025-04-28
2025-04-28
2025-04-28
2025-04-28