微信扫码
添加专属顾问
我要投稿
探索深度研究工具的本土化复现,助力信息检索和内容分析。 核心内容: 1. Deep Research功能介绍及其对金融机构、律所、科研党的吸引力 2. 相较于传统搜索引擎,Deep Research的专业性和精准性优势分析 3. 基础复现逻辑演示及升级版方案的GitHub链接提供
<think>Alright, so I need to break down the question "How has the cast changed over time?" related to the evolution of The Simpsons. Let me think about what aspects are involved here.First, I know that the cast has changed a lot, but I need to figure out the intermediate questions to approach this. The main question is about changes in the cast over time, so I should consider different areas that contribute to this change.I guess the first sub-question would be about the original cast members. Who were the main voices and how did they evolve? Then, there might be new cast additions over the years, so another sub-question about that.Also, some original voice actors have left, so I should include a sub-question about departures. Then, new voice actors joining would be another point.The show has been popular for a long time, so recurring roles changing might be another aspect. Additionally, the role of the show in society might have influenced casting choices, so a sub-question about that.Lastly, the overall impact on the cast's careers could be another angle. So, I should list these as sub-questions to cover all aspects.</think>
wiki_wiki = wikipediaapi.Wikipedia(user_agent='MilvusDeepResearchBot (<insert your email>)', language='en')page_py = wiki_wiki.page(page_title)text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)docs = text_splitter.create_documents([page_py.text])vectorstore = Milvus.from_documents(# or Zilliz.from_documentsdocuments=docs,embedding=embeddings,connection_args={"uri": "./milvus_demo.db",},drop_old=True,index_params={"metric_type": "COSINE","index_type": "FLAT","params": {},},)
# Define the RAG chain for response generationrag_chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser())# Prompt the RAG for each questionanswers = {}total = len(leaves(breakdown))pbar = tqdm(total=total)for k, v in breakdown.items():if v == []:print(k)answers[k] = rag_chain.invoke(k).split('</think>')[-1].strip()pbar.update(1)else:for q in v:print(q)answers[q] = rag_chain.invoke(q).split('</think>')[-1].strip()pbar.update(1)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-18
突发!ChatGPT版应用商店正式发布,第三方开发者新入口!
2025-12-18
实测豆包1.8后,我终于明白字节为什么要推豆包手机了。
2025-12-18
通用Agent模型Seed1.8正式发布
2025-12-18
谷歌甩出“价格屠夫”!Gemini 3 Flash超Pro,成本仅1/4,速度如“闪电”
2025-12-18
谷歌发布Gemini 3 Flash,口述即原型,速度堪比搜索引擎
2025-12-18
2026 开年AI对谈:the year of R | 对谈真格基金戴雨森
2025-12-18
再论Skill:Agent 落地第一性原理
2025-12-18
Gemini 3 Flash闪电来袭:智力竟反超Pro!速度快3倍,全球免费
2025-10-26
2025-10-02
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13
2025-10-02
2025-10-11
2025-12-16
2025-12-15
2025-12-14
2025-12-12
2025-12-12
2025-12-11
2025-12-09
2025-12-08