微信扫码
添加专属顾问
我要投稿
探索深度研究工具的本土化复现,助力信息检索和内容分析。 核心内容: 1. Deep Research功能介绍及其对金融机构、律所、科研党的吸引力 2. 相较于传统搜索引擎,Deep Research的专业性和精准性优势分析 3. 基础复现逻辑演示及升级版方案的GitHub链接提供
<think>
Alright, so I need to break down the question "How has the cast changed over time?" related to the evolution of The Simpsons. Let me think about what aspects are involved here.
First, I know that the cast has changed a lot, but I need to figure out the intermediate questions to approach this. The main question is about changes in the cast over time, so I should consider different areas that contribute to this change.
I guess the first sub-question would be about the original cast members. Who were the main voices and how did they evolve? Then, there might be new cast additions over the years, so another sub-question about that.
Also, some original voice actors have left, so I should include a sub-question about departures. Then, new voice actors joining would be another point.
The show has been popular for a long time, so recurring roles changing might be another aspect. Additionally, the role of the show in society might have influenced casting choices, so a sub-question about that.
Lastly, the overall impact on the cast's careers could be another angle. So, I should list these as sub-questions to cover all aspects.
</think>
wiki_wiki = wikipediaapi.Wikipedia(user_agent='MilvusDeepResearchBot (<insert your email>)', language='en')
page_py = wiki_wiki.page(page_title)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
docs = text_splitter.create_documents([page_py.text])
vectorstore = Milvus.from_documents(# or Zilliz.from_documents
documents=docs,
embedding=embeddings,
connection_args={
"uri": "./milvus_demo.db",
},
drop_old=True,
index_params={
"metric_type": "COSINE",
"index_type": "FLAT",
"params": {},
},
)
# Define the RAG chain for response generation
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Prompt the RAG for each question
answers = {}
total = len(leaves(breakdown))
pbar = tqdm(total=total)
for k, v in breakdown.items():
if v == []:
print(k)
answers[k] = rag_chain.invoke(k).split('</think>')[-1].strip()
pbar.update(1)
else:
for q in v:
print(q)
answers[q] = rag_chain.invoke(q).split('</think>')[-1].strip()
pbar.update(1)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-18
不只是写代码:Qwen Code 如何规划、执行并验证软件工程任务
2025-09-18
埃森哲:39页,AI 规模化的 “领跑者密码”(免费下载)
2025-09-18
大模型应用落地时的技术选型
2025-09-18
Codex 初体验有点小兴奋!
2025-09-18
Shopify 经验贴:如何搞出一个生产级别可用的 AI Agent 系统?
2025-09-17
从 AI Agent “尴尬约面故事”:谈如何降低大模型幻觉
2025-09-17
今年“十一”,谁还没带自己的AI讲解搭子?
2025-09-17
GPT-5-Codex 发布,可以7小时连续编程,但OpenAI 封杀了API。。
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-09-14
2025-07-04
2025-09-18
2025-09-17
2025-09-17
2025-09-16
2025-09-14
2025-09-12
2025-09-11
2025-09-11