微信扫码
添加专属顾问
我要投稿
探索深度研究工具的本土化复现,助力信息检索和内容分析。 核心内容: 1. Deep Research功能介绍及其对金融机构、律所、科研党的吸引力 2. 相较于传统搜索引擎,Deep Research的专业性和精准性优势分析 3. 基础复现逻辑演示及升级版方案的GitHub链接提供
<think>
Alright, so I need to break down the question "How has the cast changed over time?" related to the evolution of The Simpsons. Let me think about what aspects are involved here.
First, I know that the cast has changed a lot, but I need to figure out the intermediate questions to approach this. The main question is about changes in the cast over time, so I should consider different areas that contribute to this change.
I guess the first sub-question would be about the original cast members. Who were the main voices and how did they evolve? Then, there might be new cast additions over the years, so another sub-question about that.
Also, some original voice actors have left, so I should include a sub-question about departures. Then, new voice actors joining would be another point.
The show has been popular for a long time, so recurring roles changing might be another aspect. Additionally, the role of the show in society might have influenced casting choices, so a sub-question about that.
Lastly, the overall impact on the cast's careers could be another angle. So, I should list these as sub-questions to cover all aspects.
</think>
wiki_wiki = wikipediaapi.Wikipedia(user_agent='MilvusDeepResearchBot (<insert your email>)', language='en')
page_py = wiki_wiki.page(page_title)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
docs = text_splitter.create_documents([page_py.text])
vectorstore = Milvus.from_documents(# or Zilliz.from_documents
documents=docs,
embedding=embeddings,
connection_args={
"uri": "./milvus_demo.db",
},
drop_old=True,
index_params={
"metric_type": "COSINE",
"index_type": "FLAT",
"params": {},
},
)
# Define the RAG chain for response generation
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# Prompt the RAG for each question
answers = {}
total = len(leaves(breakdown))
pbar = tqdm(total=total)
for k, v in breakdown.items():
if v == []:
print(k)
answers[k] = rag_chain.invoke(k).split('</think>')[-1].strip()
pbar.update(1)
else:
for q in v:
print(q)
answers[q] = rag_chain.invoke(q).split('</think>')[-1].strip()
pbar.update(1)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-07-30
研发了八年基础软件,57 岁的我在 AI 时代迎来了千亿机会
2025-07-30
五年磨一剑:Agent 时代追风不如造风
2025-07-30
国内企业开发的农业AI大模型有哪些?
2025-07-30
【AI研报解读】AI产品与落地-The Builder’s Playbook
2025-07-30
Claude Code 的 Sub Agent,我真的用了,太强了
2025-07-30
OpenAI分享了一份上下文工程实用指南。
2025-07-30
AI Agent的终极未来|3万字圆桌实录
2025-07-30
Tiny QA:基于 Ollama 的本地智能知识库问答系统
2025-05-29
2025-05-23
2025-06-01
2025-05-07
2025-05-07
2025-05-07
2025-06-07
2025-06-21
2025-06-12
2025-05-20