微信扫码
添加专属顾问
我要投稿
打造企业级智能知识库的高效解决方案,让PDF表格秒变结构化数据,大幅提升检索精准度。 核心内容: 1. 硬件与软件架构要求及环境准备 2. 详细部署步骤,包括RAGFlow和Dify的配置 3. 系统整合与配置,提升文档解析优化和检索准确率的核心策略
dify与RAGFlow结合部署本地知识库并提升检索准确率的详细教程及原理分析:
硬件要求:
软件架构:
用户端 → Dify应用层(工作流编排) → RAGFlow引擎(文档解析/检索) → 本地LLM(Ollama等)
该架构通过API接口实现Dify与RAGFlow的解耦部署,既保证文档处理的专业性,又保持应用开发的灵活性。
# 克隆仓库并启动容器(需预先安装Docker)
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/deploy/docker
docker-compose up -d
关键配置:
docker-compose.yml中MINIO_ROOT_PASSWORD(对象存储密钥)elasticsearch内存分配至8GB以上# 修改环境变量(关键步骤)
vim dify-main/docker/.env
# 启用自定义模型并配置Ollama
CUSTOM_MODEL_ENABLED=true
OLLAMA_API_BASE_URL=http://[本机IP]:11434
部署命令:
cd dify-main/docker
docker compose -p dify_docker up -d
该配置实现本地模型调用,避免云端API延迟。
http://[IP]:9380 | ||
特别注意:需在RAGFlow中预先完成以下处理:
在Dify工作流中设置:
retrieval_strategy:
-vector_search:
model:jina-embeddings-v2-base-zh
top_k:8
-full_text:
analyzer:ik_max_word
rerank:
model:bge-reranker-large
score_threshold:0.35
该配置融合语义检索与关键词匹配,经测试可使表格类数据召回率提升
操作文档参考:
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-12
关于动态本体的一些新思考及多模态知识图谱构建思路VisKnow
2025-12-11
案例:Palantir AIP如何教Agent学会记忆
2025-12-10
为AI奠定知识根基:为什么每个项目都需要知识图谱
2025-12-09
在“最优复杂性”中寻找极简之道——解读Palantir 本体论的实战哲学
2025-12-08
本体论:从数据中发现意义
2025-12-05
构建本体驱动的下一代智能数字生态系统
2025-12-04
基于 Ontology 构建企业 Agent 根基:从理论到实践的技术路径 V2.0
2025-12-04
Palantir - 全球大数据与AI领域市值最高的公司-产品核心技术
2025-09-17
2025-10-30
2025-10-19
2025-09-20
2025-11-05
2025-10-21
2025-12-01
2025-10-13
2025-11-24
2025-09-29
2025-12-01
2025-07-29
2025-07-14
2025-06-14
2025-05-23
2025-05-23
2025-05-22
2025-05-20