微信扫码
添加专属顾问
我要投稿
文章的出发点:LLMs通常被训练为通用工具,但在实际应用中,它们往往需要针对特定用户或任务进行调整。现有的方法如sft或rl,需要大量的数据集,这对新任务来说成本过高。本文通过少量用户提供的监督数据来快速定制和对齐大型语言模型,以满足特定用户或任务的需求。
文章标题:Show, Don’t Tell: Aligning Language Models with Demonstrated Feedback
https://arxiv.org/html/2406.00888v1
https://github.com/SALT-NLP/demonstrated-feedback
循环3,4,5,伪代码如下图:
DITTO 性能相对较高的原因之一是它通过生成比较使用的数据远多于 SFT。另一个是,在某些情况下,online imitation learning 比 SFT形式的 demonstrator 表现得更好。
迭代次数1->4,逐渐变优;增加negative sample,2->10逐渐变优;增加演示样本数量,逐渐边优,但是收益越来越低。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费场景POC验证,效果验证后签署服务协议。零风险落地应用大模型,已交付160+中大型企业
2025-06-14
挑战 Transformer 架构的谷歌最新扩散模型 Gemini Diffusion 系统提示词
2025-06-14
“AI原生”时代:企业数智化转型的分水岭
2025-06-14
多模态RAG的三类图文问答实现方式,你知道多少种?
2025-06-14
新一代文本表征Qwen3-Embedding与排序模型Qwen3-Reranker 部署和替换
2025-06-14
“华强北”围攻AI耳机,未来智能如何突围?
2025-06-14
AI时代如何为企业和个人赋能
2025-06-14
没吃透 Function Calling?难怪你不理解 AI Agent 为何非来不可!
2025-06-14
浅尝一下微软的AutoGen框架
2025-05-29
2025-03-20
2025-03-21
2025-04-11
2025-03-20
2025-03-19
2025-03-20
2025-03-19
2025-03-19
2025-03-19
2025-06-14
2025-06-14
2025-06-14
2025-06-14
2025-06-13
2025-06-13
2025-06-13
2025-06-13