免费POC, 零成本试错
AI知识库

53AI知识库

学习大模型的前沿技术与行业应用场景


如何让模型直接输出 JSON 格式的数据?

发布日期:2025-08-25 09:34:11 浏览次数: 1526
作者:图灵AI云

微信搜一搜,关注“图灵AI云”

推荐语

让大语言模型直接输出JSON格式数据,提升自动化处理效率,告别繁琐的后处理工作。

核心内容:
1. JSON提示的工程价值与适用场景
2. 引导模型输出JSON的关键提示词设计技巧
3. Python调用API实现结构化输出的实战案例

杨芳贤
53AI创始人/腾讯云(TVP)最具价值专家

 

  今天想和大家聊一个在实际项目中越来越常见、但又容易被忽视的技术细节——JSON 提示(JSON Prompting)

  在我们日常与大语言模型(LLM)打交道的过程中,往往希望模型不仅能“说人话”,还能输出结构清晰、便于程序解析的结果。尤其是在构建自动化系统、API 接口或数据抽取流程时,纯文本的自由输出常常带来后续处理的麻烦。这时候,让模型直接输出 JSON 格式的数据,就成了一种非常实用的技巧。

为什么选择 JSON 提示?

  从工程实践的角度来看,JSON 是目前最通用的结构化数据交换格式之一。它轻量、易读、支持嵌套,且几乎所有编程语言都原生支持解析。当我们希望 LLM 输出字段明确的结果(比如提取信息、生成配置、分类打标等),使用 JSON 格式能显著降低后处理成本。

  举个简单的例子:如果我们让模型判断一段文本的情感倾向,并返回类别和置信度。如果输出是“情感是正面的,我觉得挺有信心的”,那我们需要再写规则去提取;但如果输出是:

{
  "sentiment": "positive",
  "confidence": 0.93
}

  那就可以直接 json.loads() 进程序,省时省力。

如何引导模型输出 JSON?

  关键在于提示词设计(prompt engineering)。我们需要在 prompt 中明确告诉模型两点:

  1. 1. 输出必须是合法的 JSON;
  2. 2. 给出清晰的字段定义和格式示例。

  下面是一个典型的 prompt 示例:

请根据以下用户评论判断其情感倾向,并以 JSON 格式返回结果,包含两个字段:"sentiment"(取值为 "positive"、"negative" 或 "neutral")和 "confidence"(0 到 1 之间的浮点数)。只输出 JSON,不要添加其他说明。

评论内容:这个产品真的很不错,用起来很顺手。

  注意这里的几个关键词:“以 JSON 格式返回”、“包含两个字段”、“只输出 JSON”。这些约束条件能有效引导模型进入“结构化输出”模式。

Python 实践示例

  我们来看一个简单的 Python 脚本,调用 OpenAI 的 API 实现上述功能(当然,也可以适配其他支持 function calling 或结构化输出的模型,如 Anthropic、通义千问等)。

import openai
import json

# 设置 API Key(请替换为你的实际密钥)
openai.api_key = "your-api-key"

defget_sentiment(text):
    prompt = f"""
    请分析以下评论的情感倾向,并返回 JSON 格式的结果,字段包括:
    - "sentiment": 取值为 "positive", "negative", 或 "neutral"
    - "confidence": 浮点数,表示判断的置信度(0-1)

    要求:
    1. 输出必须是合法的 JSON
    2. 不要包含任何额外说明或格式符号
    3. 只返回 JSON 对象

    评论内容:{text}
    """


    response = openai.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role""user""content": prompt}
        ],
        temperature=0.3# 降低随机性,提高输出稳定性
    )

    raw_output = response.choices[0].message.content.strip()
    try:
        result = json.loads(raw_output)
        return result
    except json.JSONDecodeError:
        print(f"JSON 解析失败:{raw_output}")
        returnNone

# 测试
comment = "这个手机电池很耐用,拍照也清楚。"
result = get_sentiment(comment)
print(result)
# 输出示例:{'sentiment': 'positive', 'confidence': 0.95}

  这段代码虽然简单,但在实际项目中非常实用。通过控制 temperature 参数,我们可以进一步提升 JSON 输出的稳定性。

常见问题与应对策略

  在实际使用中,我们发现模型偶尔会输出非法 JSON,比如缺少引号、使用单引号、或多出解释文字。对此,有几种缓解方法:

  1. 1. 后处理校验与修复:可以用 json.loads() 包裹,并配合正则或第三方库(如 json-repair)尝试自动修复。
  2. 2. 使用支持结构化输出的 API:例如 OpenAI 的 response_format={"type": "json_object"} 参数(需启用 gpt-4-turbo 或更新模型),能强制模型输出合法 JSON。
  3. 3. 提供更明确的示例(few-shot prompting):在 prompt 中加入一两个输入输出对,帮助模型理解格式要求。

  例如:

评论:服务态度很差,等了两个小时。
{"sentiment": "negative", "confidence": 0.98}

评论:还可以吧,不算好也不算差。
{"sentiment": "neutral", "confidence": 0.75}

评论:这个功能太棒了,完全超出预期!

  模型往往会模仿这种格式继续输出。

适用场景与局限性

  JSON 提示特别适合以下场景:

  • • 信息抽取(如从简历中提取姓名、电话、技能)
  • • 表单生成(根据描述生成配置项)
  • • 分类打标(多标签分类结果结构化输出)
  • • Agent 系统中的工具调用参数生成

  但也有一些局限需要注意:

  • • 模型在复杂嵌套结构下可能出错,建议结构不要太深;
  • • 某些小模型对 JSON 格式理解能力较弱,效果不如大模型稳定;
  • • 字段名称应尽量使用英文,避免中文 key 导致解析问题(虽然合法,但部分系统不友好)。

 

53AI,企业落地大模型首选服务商

产品:场景落地咨询+大模型应用平台+行业解决方案

承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业

联系我们

售前咨询
186 6662 7370
预约演示
185 8882 0121

微信扫码

添加专属顾问

回到顶部

加载中...

扫码咨询